This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336095 #11 Jul 13 2020 21:24:47 %S A336095 1,1,2,2,3,4,4,4,5,6,7,8,8,8,9,9,10,11,11,12,12,12,13,14,14,15,16,17, %T A336095 17,18,19,19,19,20,21,22,22,23,24,24,25,25,26,27,27,27,27,28,29,30,31, %U A336095 31,32,33,33,33,34,34,35,36,36,37,37,37,38,39,40,41,42,42,43,44,44,44,44 %N A336095 a(n) = a(f(n)) + a(n-f(n)) with a(1) = a(2) = 1 (f = A000006). %C A336095 If Legendre's conjecture is true, then this sequence hits every positive integer. %C A336095 Does the lim_{n->infinity} a(n)/n exist? If it exists, what is its value? %H A336095 Wikipedia, <a href="http://en.wikipedia.org/wiki/Legendre%27s_conjecture">Legendre's conjecture</a> %t A336095 f[n_] := IntegerPart[Sqrt[Prime[n]]]; a[1] = a[2] = 1; a[n_] := a[n] = a[(f1 = f[n])] + a[n - f1]; Array[a, 100] (* _Amiram Eldar_, Jul 08 2020 *) %o A336095 (PARI) q=vector(10^2); for(n=1, 2, q[n] = 1); for(n=3, #q, q[n] = q[sqrtint(prime(n))] + q[n- sqrtint(prime(n))]); q %Y A336095 Cf. A000006, A316434. %K A336095 nonn %O A336095 1,3 %A A336095 _Altug Alkan_, Jul 08 2020