cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336096 Irregular triangular array read by rows. T(n,k) is the number of unlabeled forests of distinct trees on n nodes containing exactly k trees.

This page as a plain text file.
%I A336096 #31 Feb 19 2025 16:12:42
%S A336096 1,1,1,1,2,1,3,3,6,5,1,11,11,2,23,21,5,47,46,12,106,96,27,2,235,216,
%T A336096 62,4,551,482,142,13,1301,1121,328,33,3159,2633,763,87,1,7741,6334,
%U A336096 1809,211,6,19320,15414,4322,532,18,48629,38132,10488,1301,55,123867,95321,25710,3232,157,317955,241029,63802,7996,429,3,823065,614862,159817,19973,1149,12
%N A336096 Irregular triangular array read by rows.  T(n,k) is the number of unlabeled forests of distinct trees on n nodes containing exactly k trees.
%F A336096 O.g.f.: Product_n>=1 (1+ y*x^n)^A000055(n).
%e A336096 Triangle begins:
%e A336096     1;
%e A336096     1;
%e A336096     1,  1;
%e A336096     2,  1;
%e A336096     3,  3;
%e A336096     6,  5,  1;
%e A336096    11, 11,  2;
%e A336096    23, 21,  5;
%e A336096    47, 46, 12;
%e A336096   106, 96, 27, 2;
%e A336096   ...
%t A336096 nn = 20; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[0 == Series[f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; b = Drop[Flatten[CoefficientList[Series[r[x] - 1/2 (r[x]^2 - r[x^2]), {x, 0, nn}],x]], 1]; Map[Select[#, # > 0 &] &, Drop[CoefficientList[
%t A336096     Series[Product[(1 + y x^n)^b[[n]], {n, 1, nn}], {x, 0, nn}], {x,y}], 1]] // Grid
%Y A336096 Cf. A035055 (row sums), A000055 (column 1), A095133.
%K A336096 nonn,tabf
%O A336096 1,5
%A A336096 _Geoffrey Critzer_, Jul 09 2020