This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336096 #31 Feb 19 2025 16:12:42 %S A336096 1,1,1,1,2,1,3,3,6,5,1,11,11,2,23,21,5,47,46,12,106,96,27,2,235,216, %T A336096 62,4,551,482,142,13,1301,1121,328,33,3159,2633,763,87,1,7741,6334, %U A336096 1809,211,6,19320,15414,4322,532,18,48629,38132,10488,1301,55,123867,95321,25710,3232,157,317955,241029,63802,7996,429,3,823065,614862,159817,19973,1149,12 %N A336096 Irregular triangular array read by rows. T(n,k) is the number of unlabeled forests of distinct trees on n nodes containing exactly k trees. %F A336096 O.g.f.: Product_n>=1 (1+ y*x^n)^A000055(n). %e A336096 Triangle begins: %e A336096 1; %e A336096 1; %e A336096 1, 1; %e A336096 2, 1; %e A336096 3, 3; %e A336096 6, 5, 1; %e A336096 11, 11, 2; %e A336096 23, 21, 5; %e A336096 47, 46, 12; %e A336096 106, 96, 27, 2; %e A336096 ... %t A336096 nn = 20; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[0 == Series[f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; b = Drop[Flatten[CoefficientList[Series[r[x] - 1/2 (r[x]^2 - r[x^2]), {x, 0, nn}],x]], 1]; Map[Select[#, # > 0 &] &, Drop[CoefficientList[ %t A336096 Series[Product[(1 + y x^n)^b[[n]], {n, 1, nn}], {x, 0, nn}], {x,y}], 1]] // Grid %Y A336096 Cf. A035055 (row sums), A000055 (column 1), A095133. %K A336096 nonn,tabf %O A336096 1,5 %A A336096 _Geoffrey Critzer_, Jul 09 2020