This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336097 #18 Jul 09 2020 07:22:06 %S A336097 1,1,-1,-5,-13,-149,-1861,-21965,-267373,-3163109,-34739221, %T A336097 -352104125,-3806609533,-67068890069,-1866226978981,-51776974365485, %U A336097 -1180415240484493,-19613026052409029,-122604194898649141,6950364605049945955,394565422299921179747,13840685990526765512011 %N A336097 E.g.f.: Product_{k>=1} (1 - (1 - exp(x))^k). %F A336097 a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * k! * A010815(k). %t A336097 m = 21; Range[0, m]! * CoefficientList[Series[Product[1 - (1 - Exp[x])^k, {k, 1, m}], {x, 0, m}], x] (* _Amiram Eldar_, Jul 08 2020 *) %t A336097 A010815[k_] := (m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0]); Table[Sum[(-1)^k * StirlingS2[n, k] * k! * A010815[k], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Jul 09 2020 *) %o A336097 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1-(1-exp(x))^k))) %Y A336097 Cf. A010815, A167137, A335812, A335813, A336100. %K A336097 sign %O A336097 0,4 %A A336097 _Seiichi Manyama_, Jul 08 2020