cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336100 E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k).

This page as a plain text file.
%I A336100 #19 Jul 09 2020 09:40:44
%S A336100 1,-1,-3,-7,-15,89,1737,21713,266865,3162089,34737177,352100033,
%T A336100 2848598145,-7655375911,-1359369828183,-50221626404047,
%U A336100 -1460912626424175,-39804558811289911,-1080962878982246343,-29431779044695154527,-788320672341728128095,-20386762121171790275911
%N A336100 E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k).
%F A336100 a(n) = Sum_{k=0..n} Stirling2(n,k) * k! * A010815(k).
%t A336100 m = 21; Range[0, m]! * CoefficientList[Series[Product[1 - (Exp[x] - 1)^k, {k, 1, m}], {x, 0, m}], x] (* _Amiram Eldar_, Jul 08 2020 *)
%t A336100 A010815[k_] := (m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0]); Table[Sum[StirlingS2[n, k] * k! * A010815[k], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Jul 09 2020 *)
%o A336100 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1-(exp(x)-1)^k)))
%o A336100 (PARI) f(n) = if( issquare( 24*n + 1, &n), kronecker( 12, n)); \\ A010815
%o A336100 a(n) = sum(k=0, n, stirling(n,k,2) * k! * f(k)); \\ _Michel Marcus_, Jul 09 2020
%Y A336100 Cf. A010815, A167137, A335812, A335813, A336097.
%K A336100 sign
%O A336100 0,3
%A A336100 _Seiichi Manyama_, Jul 08 2020