This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336101 #40 May 22 2024 12:55:06 %S A336101 3,5,6,7,9,10,11,12,13,14,17,18,19,20,22,23,24,25,26,27,28,29,31,34, %T A336101 36,37,38,40,41,43,44,46,47,48,49,50,52,53,54,56,58,59,61,62,67,68,71, %U A336101 72,73,74,76,79,80,81,82,83,86,88,89,92,94,96,97,98,100,101,103,104 %N A336101 Numbers divisible by exactly one odd prime. %C A336101 Numbers k for which A001221(A000265(k)) = 1. - _Antti Karttunen_, Jul 08 2020 %C A336101 Numbers whose odd part is a prime power (A246655). - _Amiram Eldar_, Jul 08 2020 %C A336101 Numbers of the form 2^r * p^q with p an odd prime (A065091), r >= 0, q >= 1. - _Bernard Schott_, Dec 14 2020 %H A336101 Amiram Eldar, <a href="/A336101/b336101.txt">Table of n, a(n) for n = 1..10000</a> %t A336101 Select[Range[104], PrimePowerQ[#/2^IntegerExponent[#, 2]] &] (* _Amiram Eldar_, Jul 08 2020 *) %o A336101 (PARI) isA336101(n) = (1==omega(n>>valuation(n,2))); \\ _Antti Karttunen_, Jul 08 2020 %Y A336101 Cf. A000265, A001221, A246655, A340373 (characteristic function). %Y A336101 Positions of ones in A005087. %Y A336101 Subsequence of A267895. %Y A336101 Subsequences: A007283 (3*2^n), A020714 (5*2^n), A005009 (7*2^n), A005015 (11*2^n), A005029 (13*2^n), A038550 (p*2^n, p odd prime), A065091 (odd primes), A061345 \ {1} (odd prime powers). %K A336101 nonn,easy %O A336101 1,1 %A A336101 _Peter Munn_, Jul 08 2020