cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336103 Number of separable multisets of size n covering an initial interval of positive integers.

This page as a plain text file.
%I A336103 #24 Apr 08 2021 07:25:45
%S A336103 1,1,1,3,5,13,24,56,108,236,464,976,1936,3984,7936,16128,32192,64960,
%T A336103 129792,260864,521472,1045760,2091008,4188160,8375296,16763904,
%U A336103 33525760,67080192,134156288,268374016,536739840,1073610752,2147205120,4294688768,8589344768,17179279360,34358493184
%N A336103 Number of separable multisets of size n covering an initial interval of positive integers.
%C A336103 A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
%C A336103 Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one. Hence a(n) is the number of compositions of n whose greatest part is at most one more than the sum of its other parts. For example, the a(1) = 1 through a(5) = 13 compositions are:
%C A336103   (1)  (11)  (12)   (22)    (23)
%C A336103              (21)   (112)   (32)
%C A336103              (111)  (121)   (113)
%C A336103                     (211)   (122)
%C A336103                     (1111)  (131)
%C A336103                             (212)
%C A336103                             (221)
%C A336103                             (311)
%C A336103                             (1112)
%C A336103                             (1121)
%C A336103                             (1211)
%C A336103                             (2111)
%C A336103                             (11111)
%H A336103 Michael De Vlieger, <a href="/A336103/b336103.txt">Table of n, a(n) for n = 0..3322</a>
%H A336103 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,-8,-4,8).
%F A336103 a(n) = 2^(n-1) - (floor(n/2)+1) * 2^(floor(n/2)-2) for n >= 2. - _David A. Corneth_, Jul 09 2020
%F A336103 From _Chai Wah Wu_, Apr 07 2021: (Start)
%F A336103 a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) - 4*a(n-4) + 8*a(n-5) for n > 6.
%F A336103 G.f.: (x - 1)*(2*x^5 + 7*x^4 - 5*x^2 + 1)/((2*x - 1)*(2*x^2 - 1)^2). (End)
%e A336103 The a(1) = 1 through a(5) = 13 separable multisets:
%e A336103   {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
%e A336103               {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
%e A336103               {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
%e A336103                        {1,2,3,3}  {1,1,2,2,3}
%e A336103                        {1,2,3,4}  {1,1,2,3,3}
%e A336103                                   {1,1,2,3,4}
%e A336103                                   {1,2,2,2,3}
%e A336103                                   {1,2,2,3,3}
%e A336103                                   {1,2,2,3,4}
%e A336103                                   {1,2,3,3,3}
%e A336103                                   {1,2,3,3,4}
%e A336103                                   {1,2,3,4,4}
%e A336103                                   {1,2,3,4,5}
%t A336103 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
%t A336103 sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{___,x_,x_,___}]&]!={};
%t A336103 Table[Length[Select[allnorm[n],sepQ]],{n,0,5}]
%t A336103 (* or *)
%t A336103 Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx<=1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}] (* or *)
%t A336103 CoefficientList[Series[(x - 1) (2 x^5 + 7 x^4 - 5 x^2 + 1)/((2 x - 1) (2 x^2 - 1)^2), {x, 0, 36}], x] (* _Michael De Vlieger_, Apr 07 2021 *)
%Y A336103 The inseparable version is A336102.
%Y A336103 The strong (weakly decreasing multiplicities) case is A336106.
%Y A336103 Sequences covering an initial interval are A000670.
%Y A336103 Anti-run compositions are A003242.
%Y A336103 Anti-run patterns are A005649.
%Y A336103 Separable partitions are A325534.
%Y A336103 Inseparable partitions are A325535.
%Y A336103 Inseparable factorizations are A333487.
%Y A336103 Anti-run compositions are ranked by A333489.
%Y A336103 Heinz numbers of inseparable partitions are A335448.
%Y A336103 Cf. A001792, A019472, A025065, A049610, A052841, A106351, A269134, A292884, A335126, A335433, A335452.
%K A336103 nonn,easy
%O A336103 0,4
%A A336103 _Gus Wiseman_, Jul 09 2020
%E A336103 a(26)-a(36) from _David A. Corneth_, Jul 09 2020