This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336104 #12 Sep 08 2020 02:19:52 %S A336104 0,0,0,0,0,2,0,0,0,0,0,24,0,0,0,0,0,96,0,120,6,0,0,720,0,0,0,0,0,720, %T A336104 0,0,0,0,0,322560,0,0,0,5040,0,4320,0,0,0,0,0,362880,0,0 %N A336104 Number of permutations of the prime indices of A000225(n) = 2^n - 1 with at least one non-singleton run. %C A336104 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A336104 a(n) = A336107(2^n - 1). %F A336104 a(n) = A336105(n) - A335432(n). %e A336104 The a(21) = 6 permutations of {4, 4, 31, 68}: %e A336104 (4,4,31,68) %e A336104 (4,4,68,31) %e A336104 (31,4,4,68) %e A336104 (31,68,4,4) %e A336104 (68,4,4,31) %e A336104 (68,31,4,4) %t A336104 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A336104 Table[Length[Select[Permutations[primeMS[2^n-1]],MatchQ[#,{___,x_,x_,___}]&]],{n,30}] %Y A336104 A335432 is the anti-run version. %Y A336104 A335459 is the version for factorial numbers. %Y A336104 A336105 counts all permutations of this multiset. %Y A336104 A336107 is not restricted to predecessors of powers of 2. %Y A336104 A003242 counts anti-run compositions. %Y A336104 A005649 counts anti-run patterns. %Y A336104 A008480 counts permutations of prime indices. %Y A336104 A325534 counts separable partitions, ranked by A335433. %Y A336104 A325535 counts inseparable partitions, ranked by A335448. %Y A336104 A333489 ranks anti-run compositions. %Y A336104 A335433 lists numbers whose prime indices have an anti-run permutation. %Y A336104 A335448 lists numbers whose prime indices have no anti-run permutation. %Y A336104 A335452 counts anti-run permutations of prime indices. %Y A336104 A335489 counts strict permutations of prime indices. %Y A336104 Cf. A056239, A106351, A112798, A114938, A292884, A336102. %Y A336104 The numbers 2^n - 1: A000225, A001265, A001348, A046051, A046800, A046801, A049093, A325610, A325611, A325612, A325625. %K A336104 nonn,more %O A336104 1,6 %A A336104 _Gus Wiseman_, Sep 03 2020