This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336106 #8 Jul 09 2020 22:43:18 %S A336106 1,1,1,2,3,5,7,11,15,23,30,44,58,82,105,146,186,252,318,423,530,695, %T A336106 863,1116,1380,1763,2164,2738,3345,4192,5096,6334,7665,9459,11395, %U A336106 13968,16765,20425,24418,29588,35251,42496,50460,60547,71669,85628 %N A336106 Number of integer partitions of n whose greatest part is at most one more than the sum of the other parts. %C A336106 Also the number of separable strong multisets of length n covering an initial interval of positive integers. A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. %e A336106 The a(1) = 1 through a(8) = 15 partitions: %e A336106 (1) (11) (21) (22) (32) (33) (43) (44) %e A336106 (111) (211) (221) (222) (322) (332) %e A336106 (1111) (311) (321) (331) (422) %e A336106 (2111) (2211) (421) (431) %e A336106 (11111) (3111) (2221) (2222) %e A336106 (21111) (3211) (3221) %e A336106 (111111) (4111) (3311) %e A336106 (22111) (4211) %e A336106 (31111) (22211) %e A336106 (211111) (32111) %e A336106 (1111111) (41111) %e A336106 (221111) %e A336106 (311111) %e A336106 (2111111) %e A336106 (11111111) %t A336106 Table[Length[Select[IntegerPartitions[n],2*Max@@#<=1+n&]],{n,0,15}] %Y A336106 The inseparable version is A025065. %Y A336106 The Heinz numbers of these partitions are A335127. %Y A336106 The non-strong version is A336103. %Y A336106 Sequences covering an initial interval are A000670. %Y A336106 Anti-run compositions are A003242. %Y A336106 Anti-run patterns are A005649. %Y A336106 Separable partitions are A325534. %Y A336106 Inseparable partitions are A325535. %Y A336106 Separable factorizations are A335434. %Y A336106 Heinz numbers of separable partitions are A335433. %Y A336106 Cf. A049610, A106351, A292884, A335126, A335433, A335452, A335548, A336102. %K A336106 nonn %O A336106 0,4 %A A336106 _Gus Wiseman_, Jul 09 2020