This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336111 #19 Aug 25 2020 00:16:54 %S A336111 0,1,0,1,0,0,1,1,1,0,1,0,0,0,0,1,1,3,1,1,0,1,4,2,0,2,0,0,1,2,3,1,1,0, %T A336111 1,0,1,0,6,4,0,0,1,0,0,1,7,3,4,5,1,3,1,1,0,1,6,0,0,3,0,3,0,0,0,0,1,9, %U A336111 7,4,5,1,1,1,1,1,1,0,1,4,9,6,2,0,0,4,4,0,2,0,0 %N A336111 A non-symmetrical rectangular array read by antidiagonals: A(n,m) is the tower of powers of n modulo m. %C A336111 Although all numbers appear to be present, 1 appears most often followed by 0. %C A336111 Since the first column and main diagonal are equal to 0, all matrices whose upper left corner is on the main diagonal have as their determinant 0. %D A336111 Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229. %H A336111 Robert G. Wilson v, <a href="/A133612/a133612_2.txt">Mathematica coding for "SuperPowerMod" from Vardi</a> %e A336111 \m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... %e A336111 n\ %e A336111 _1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A336111 _2 0 0 1 0 1 4 2 0 7 6 9 4 3 2 1 0 %e A336111 _3 0 1 0 3 2 3 6 3 0 7 9 3 1 13 12 11 %e A336111 _4 0 0 1 0 1 4 4 0 4 6 4 4 9 4 1 0 %e A336111 _5 0 1 2 1 0 5 3 5 2 5 1 5 5 3 5 5 %e A336111 _6 0 0 0 0 1 0 1 0 0 6 5 0 1 8 6 0 %e A336111 _7 0 1 1 3 3 1 0 7 7 3 2 7 6 7 13 7 %e A336111 _8 0 0 1 0 1 4 1 0 1 6 3 4 1 8 1 0 %e A336111 _9 0 1 0 1 4 3 1 1 0 9 5 9 1 1 9 9 %e A336111 10 0 0 1 0 0 4 4 0 1 0 1 4 3 4 10 0 %e A336111 etc, . %t A336111 (* first load all lines of Super Power Mod by Ilan Vardi from the hyper-link *) %t A336111 Table[ SuperPowerMod[n - m + 1, 2^100, m], {n, 14}, {m, n, 1, -1}] // Flatten (* or *) %t A336111 a[b_, 1] = 0; a[b_, n_] := PowerMod[b, If[OddQ@ b, a[b, EulerPhi[n]], EulerPhi[n] + a[b, EulerPhi[n]]], n]; Table[a[b - m + 1, m], {b, 14}, {m, b, 1, -1}] // Flatten %Y A336111 Cf. A245970, A240162, A245971, A245972, A245973, A245974, A332055, A332054. %K A336111 nonn,tabl %O A336111 1,18 %A A336111 _Jinyuan Wang_ and _Robert G. Wilson v_, Apr 15 2020