This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336127 #8 Jul 11 2020 07:38:20 %S A336127 1,1,2,8,16,48,144,352,896,2432,7168,16896,46080,114688,303104,843776, %T A336127 2080768,5308416,13762560,34865152,87818240,241172480,583008256, %U A336127 1503657984,3762290688,9604956160,23689428992,60532195328,156397207552,385137770496,967978254336 %N A336127 Number of ways to split a composition of n into contiguous subsequences with different sums. %C A336127 A composition of n is a finite sequence of positive integers summing to n. %H A336127 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %F A336127 a(n) = Sum_{k=0..n} 2^(n-k) k! A008289(n,k). %e A336127 The a(0) = 1 through a(4) = 16 splits: %e A336127 () (1) (2) (3) (4) %e A336127 (1,1) (1,2) (1,3) %e A336127 (2,1) (2,2) %e A336127 (1,1,1) (3,1) %e A336127 (1),(2) (1,1,2) %e A336127 (2),(1) (1,2,1) %e A336127 (1),(1,1) (1),(3) %e A336127 (1,1),(1) (2,1,1) %e A336127 (3),(1) %e A336127 (1,1,1,1) %e A336127 (1),(1,2) %e A336127 (1),(2,1) %e A336127 (1,2),(1) %e A336127 (2,1),(1) %e A336127 (1),(1,1,1) %e A336127 (1,1,1),(1) %t A336127 splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; %t A336127 Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}] %Y A336127 The version with equal instead of different sums is A074854. %Y A336127 Starting with a strict composition gives A336128. %Y A336127 Starting with a partition gives A336131. %Y A336127 Starting with a strict partition gives A336132 %Y A336127 Partitions of partitions are A001970. %Y A336127 Partitions of compositions are A075900. %Y A336127 Compositions of compositions are A133494. %Y A336127 Compositions of partitions are A323583. %Y A336127 Cf. A006951, A063834, A279786, A305551, A316245, A317715, A323433, A336130, A336134, A336135. %K A336127 nonn %O A336127 0,3 %A A336127 _Gus Wiseman_, Jul 09 2020