This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336128 #12 Feb 15 2024 01:15:22 %S A336128 1,1,1,5,5,9,29,37,57,89,265,309,521,745,1129,3005,3545,5685,8201, %T A336128 12265,16629,41369,48109,77265,107645,160681,214861,316913,644837, %U A336128 798861,1207445,1694269,2437689,3326705,4710397,6270513,12246521,14853625,22244569,30308033,43706705,57926577,82166105,107873221,148081785,257989961,320873065,458994657,628016225,875485585,1165065733 %N A336128 Number of ways to split a strict composition of n into contiguous subsequences with different sums. %C A336128 A composition of n is a finite sequence of positive integers summing to n. %H A336128 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A336128 The a(0) = 1 through a(5) = 5 splits: %e A336128 () (1) (2) (3) (4) (5) %e A336128 (12) (13) (14) %e A336128 (21) (31) (23) %e A336128 (1)(2) (1)(3) (32) %e A336128 (2)(1) (3)(1) (41) %e A336128 (1)(4) %e A336128 (2)(3) %e A336128 (3)(2) %e A336128 (4)(1) %e A336128 The a(6) = 29 splits: %e A336128 (6) (1)(5) (1)(2)(3) %e A336128 (15) (2)(4) (1)(3)(2) %e A336128 (24) (4)(2) (2)(1)(3) %e A336128 (42) (5)(1) (2)(3)(1) %e A336128 (51) (1)(23) (3)(1)(2) %e A336128 (123) (1)(32) (3)(2)(1) %e A336128 (132) (13)(2) %e A336128 (213) (2)(13) %e A336128 (231) (2)(31) %e A336128 (312) (23)(1) %e A336128 (321) (31)(2) %e A336128 (32)(1) %t A336128 splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; %t A336128 Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}] %Y A336128 The version with equal instead of different sums is A336130. %Y A336128 Starting with a non-strict composition gives A336127. %Y A336128 Starting with a partition gives A336131. %Y A336128 Starting with a strict partition gives A336132. %Y A336128 Partitions of partitions are A001970. %Y A336128 Partitions of compositions are A075900. %Y A336128 Compositions of compositions are A133494. %Y A336128 Set partitions with distinct block-sums are A275780. %Y A336128 Compositions of partitions are A323583. %Y A336128 Cf. A006951, A063834, A271619, A279375, A305551, A326519, A317508, A318684, A336133, A336134, A336135. %K A336128 nonn %O A336128 0,4 %A A336128 _Gus Wiseman_, Jul 10 2020 %E A336128 a(31)-a(50) from _Max Alekseyev_, Feb 14 2024