This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336129 #5 Jul 13 2020 22:21:29 %S A336129 1,2,4,5,6,16,14,24,31,64,66,120,134,208,360,459,618,894,1178,1622, %T A336129 2768,3364,4758,6432,8767,11440,15634,24526,30462,42296,55742,75334, %U A336129 98112,131428,168444,258403,315974,432244,558464,753132,958266,1280840,1621274 %N A336129 Number of strict compositions of divisors of n. %C A336129 A strict composition of k is a finite sequence of distinct positive integers summing to k. %F A336129 Moebius transform is A032020 (strict compositions). %e A336129 The a(1) = 1 through a(7) = 14 compositions: %e A336129 (1) (1) (1) (1) (1) (1) (1) %e A336129 (2) (3) (2) (5) (2) (7) %e A336129 (1,2) (4) (1,4) (3) (1,6) %e A336129 (2,1) (1,3) (2,3) (6) (2,5) %e A336129 (3,1) (3,2) (1,2) (3,4) %e A336129 (4,1) (1,5) (4,3) %e A336129 (2,1) (5,2) %e A336129 (2,4) (6,1) %e A336129 (4,2) (1,2,4) %e A336129 (5,1) (1,4,2) %e A336129 (1,2,3) (2,1,4) %e A336129 (1,3,2) (2,4,1) %e A336129 (2,1,3) (4,1,2) %e A336129 (2,3,1) (4,2,1) %e A336129 (3,1,2) %e A336129 (3,2,1) %t A336129 Table[Sum[Length[Join@@Permutations/@Select[IntegerPartitions[d],UnsameQ@@#&]],{d,Divisors[n]}],{n,12}] %Y A336129 Compositions of divisors are A034729. %Y A336129 Strict partitions of divisors are A047966. %Y A336129 Partitions of divisors are A047968. %Y A336129 Cf. A000005, A001970, A006951, A133494, A318683, A336128, A336130, A336132. %K A336129 nonn %O A336129 1,2 %A A336129 _Gus Wiseman_, Jul 11 2020