cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336129 Number of strict compositions of divisors of n.

This page as a plain text file.
%I A336129 #5 Jul 13 2020 22:21:29
%S A336129 1,2,4,5,6,16,14,24,31,64,66,120,134,208,360,459,618,894,1178,1622,
%T A336129 2768,3364,4758,6432,8767,11440,15634,24526,30462,42296,55742,75334,
%U A336129 98112,131428,168444,258403,315974,432244,558464,753132,958266,1280840,1621274
%N A336129 Number of strict compositions of divisors of n.
%C A336129 A strict composition of k is a finite sequence of distinct positive integers summing to k.
%F A336129 Moebius transform is A032020 (strict compositions).
%e A336129 The a(1) = 1 through a(7) = 14 compositions:
%e A336129   (1)  (1)  (1)    (1)    (1)    (1)      (1)
%e A336129        (2)  (3)    (2)    (5)    (2)      (7)
%e A336129             (1,2)  (4)    (1,4)  (3)      (1,6)
%e A336129             (2,1)  (1,3)  (2,3)  (6)      (2,5)
%e A336129                    (3,1)  (3,2)  (1,2)    (3,4)
%e A336129                           (4,1)  (1,5)    (4,3)
%e A336129                                  (2,1)    (5,2)
%e A336129                                  (2,4)    (6,1)
%e A336129                                  (4,2)    (1,2,4)
%e A336129                                  (5,1)    (1,4,2)
%e A336129                                  (1,2,3)  (2,1,4)
%e A336129                                  (1,3,2)  (2,4,1)
%e A336129                                  (2,1,3)  (4,1,2)
%e A336129                                  (2,3,1)  (4,2,1)
%e A336129                                  (3,1,2)
%e A336129                                  (3,2,1)
%t A336129 Table[Sum[Length[Join@@Permutations/@Select[IntegerPartitions[d],UnsameQ@@#&]],{d,Divisors[n]}],{n,12}]
%Y A336129 Compositions of divisors are A034729.
%Y A336129 Strict partitions of divisors are A047966.
%Y A336129 Partitions of divisors are A047968.
%Y A336129 Cf. A000005, A001970, A006951, A133494, A318683, A336128, A336130, A336132.
%K A336129 nonn
%O A336129 1,2
%A A336129 _Gus Wiseman_, Jul 11 2020