This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336130 #11 Feb 15 2024 01:15:02 %S A336130 1,1,1,3,3,5,15,13,23,27,73,65,129,133,241,375,519,617,1047,1177,1859, %T A336130 2871,3913,4757,7653,8761,13273,16155,28803,30461,50727,55741,87743, %U A336130 100707,152233,168425,308937,315973,500257,571743,871335,958265,1511583,1621273,2449259,3095511,4335385,4957877,7554717,8407537,12325993,14301411,20348691,22896077,33647199,40267141,56412983,66090291,93371665,106615841,155161833 %N A336130 Number of ways to split a strict composition of n into contiguous subsequences all having the same sum. %H A336130 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A336130 The a(1) = 1 through a(7) = 13 splits: %e A336130 (1) (2) (3) (4) (5) (6) (7) %e A336130 (1,2) (1,3) (1,4) (1,5) (1,6) %e A336130 (2,1) (3,1) (2,3) (2,4) (2,5) %e A336130 (3,2) (4,2) (3,4) %e A336130 (4,1) (5,1) (4,3) %e A336130 (1,2,3) (5,2) %e A336130 (1,3,2) (6,1) %e A336130 (2,1,3) (1,2,4) %e A336130 (2,3,1) (1,4,2) %e A336130 (3,1,2) (2,1,4) %e A336130 (3,2,1) (2,4,1) %e A336130 (1,2),(3) (4,1,2) %e A336130 (2,1),(3) (4,2,1) %e A336130 (3),(1,2) %e A336130 (3),(2,1) %t A336130 splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; %t A336130 Table[Sum[Length[Select[splits[ctn],SameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}] %Y A336130 The version with different instead of equal sums is A336128. %Y A336130 Starting with a non-strict composition gives A074854. %Y A336130 Starting with a partition gives A317715. %Y A336130 Starting with a strict partition gives A318683. %Y A336130 Set partitions with equal block-sums are A035470. %Y A336130 Partitions of partitions are A001970. %Y A336130 Partitions of compositions are A075900. %Y A336130 Compositions of compositions are A133494. %Y A336130 Compositions of partitions are A323583. %Y A336130 Cf. A006951, A063834, A271619, A279375, A305551, A317508, A318684, A326519, A336127, A336132, A336134, A336135. %K A336130 nonn %O A336130 0,4 %A A336130 _Gus Wiseman_, Jul 11 2020 %E A336130 a(31)-a(60) from _Max Alekseyev_, Feb 14 2024