This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336131 #5 Jul 11 2020 07:38:43 %S A336131 1,1,2,6,9,20,44,74,123,231,441,681,1188,1889,3110,5448,8310,13046 %N A336131 Number of ways to split an integer partition of n into contiguous subsequences all having different sums. %H A336131 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A336131 The a(1) = 1 through a(4) = 9 splits: %e A336131 (1) (2) (3) (4) %e A336131 (1,1) (2,1) (2,2) %e A336131 (1,1,1) (3,1) %e A336131 (2),(1) (2,1,1) %e A336131 (1),(1,1) (3),(1) %e A336131 (1,1),(1) (1,1,1,1) %e A336131 (2,1),(1) %e A336131 (1),(1,1,1) %e A336131 (1,1,1),(1) %t A336131 splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; %t A336131 Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}] %Y A336131 The version with equal instead of different sums is A317715. %Y A336131 Starting with a composition gives A336127. %Y A336131 Starting with a strict composition gives A336128. %Y A336131 Starting with a strict partition gives A336132. %Y A336131 Partitions of partitions are A001970. %Y A336131 Partitions of compositions are A075900. %Y A336131 Compositions of compositions are A133494. %Y A336131 Compositions of partitions are A323583. %Y A336131 Cf. A006951, A063834, A279786, A305551, A316245, A323433, A336130, A336134, A336135. %K A336131 nonn,more %O A336131 0,3 %A A336131 _Gus Wiseman_, Jul 11 2020