This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336132 #4 Jul 11 2020 07:38:50 %S A336132 1,1,1,3,3,5,8,11,14,21,30,37,51,66,86,120,146,186,243,303,378,495, %T A336132 601,752,927,1150,1395,1741,2114,2571,3134,3788,4541,5527,6583,7917, %U A336132 9511,11319,13448,16040,18996,22455,26589,31317,36844,43518,50917,59655,69933 %N A336132 Number of ways to split a strict integer partition of n into contiguous subsequences all having different sums. %H A336132 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A336132 The a(1) = 1 through a(7) = 14 splits: %e A336132 (1) (2) (3) (4) (5) (6) (7) %e A336132 (2,1) (3,1) (3,2) (4,2) (4,3) %e A336132 (2),(1) (3),(1) (4,1) (5,1) (5,2) %e A336132 (3),(2) (3,2,1) (6,1) %e A336132 (4),(1) (4),(2) (4,2,1) %e A336132 (5),(1) (4),(3) %e A336132 (3,2),(1) (5),(2) %e A336132 (3),(2),(1) (6),(1) %e A336132 (4),(2,1) %e A336132 (4,2),(1) %e A336132 (4),(2),(1) %t A336132 splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; %t A336132 Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}] %Y A336132 The version with equal instead of different sums is A318683. %Y A336132 Starting with a composition gives A336127. %Y A336132 Starting with a strict composition gives A336128. %Y A336132 Starting with a partition gives A336131. %Y A336132 Partitions of partitions are A001970. %Y A336132 Partitions of compositions are A075900. %Y A336132 Compositions of compositions are A133494. %Y A336132 Compositions of partitions are A323583. %Y A336132 Cf. A006951, A063834, A279786, A305551, A316245, A317715, A323433, A336130, A336134, A336135. %K A336132 nonn %O A336132 0,4 %A A336132 _Gus Wiseman_, Jul 11 2020