This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336133 #5 Jul 11 2020 07:38:56 %S A336133 1,1,1,2,2,3,4,5,6,9,11,14,17,22,26,35,40,51,60,75,86,109,124,153,175, %T A336133 214,243,297,336,403,456,546,614,731,821,975,1095,1283,1437,1689,1887, %U A336133 2195,2448,2851,3172,3676,4083,4724,5245,6022,6677,7695,8504,9720 %N A336133 Number of ways to split a strict integer partition of n into contiguous subsequences with strictly increasing sums. %H A336133 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A336133 The a(1) = 1 through a(9) = 9 splittings: %e A336133 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A336133 (2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4) %e A336133 (4,1) (5,1) (5,2) (6,2) (6,3) %e A336133 (3,2,1) (6,1) (7,1) (7,2) %e A336133 (4,2,1) (4,3,1) (8,1) %e A336133 (5,2,1) (4,3,2) %e A336133 (5,3,1) %e A336133 (6,2,1) %e A336133 (4),(3,2) %e A336133 The first splitting with more than two blocks is (8),(7,6),(5,4,3,2) under n = 35. %t A336133 splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; %t A336133 Table[Sum[Length[Select[splits[ctn],Less@@Total/@#&]],{ctn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}] %Y A336133 The version with equal sums is A318683. %Y A336133 The version with strictly decreasing sums is A318684. %Y A336133 The version with weakly decreasing sums is A319794. %Y A336133 The version with different sums is A336132. %Y A336133 Starting with a composition gives A304961. %Y A336133 Starting with a non-strict partition gives A336134. %Y A336133 Partitions of partitions are A001970. %Y A336133 Partitions of compositions are A075900. %Y A336133 Compositions of compositions are A133494. %Y A336133 Compositions of partitions are A323583. %Y A336133 Cf. A006951, A063834, A279786, A305551, A316245, A317715, A323433, A336127, A336128, A336130, A336135. %K A336133 nonn %O A336133 0,4 %A A336133 _Gus Wiseman_, Jul 11 2020