This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336134 #11 Jan 19 2024 02:19:08 %S A336134 1,1,2,4,6,11,17,27,37,62,82,125,168,246,320,462,585,839,1078,1466, %T A336134 1830,2528,3136,4188,5210,6907,8498,11177,13570,17668,21614,27580, %U A336134 33339,42817,51469,65083,78457,98409,117602,147106,174663,217400,259318,319076,377707 %N A336134 Number of ways to split an integer partition of n into contiguous subsequences with strictly increasing sums. %H A336134 Andrew Howroyd, <a href="/A336134/b336134.txt">Table of n, a(n) for n = 0..75</a> %e A336134 The a(1) = 1 through a(6) = 17 splits: %e A336134 (1) (2) (3) (4) (5) (6) %e A336134 (1,1) (2,1) (2,2) (3,2) (3,3) %e A336134 (1,1,1) (3,1) (4,1) (4,2) %e A336134 (1),(1,1) (2,1,1) (2,2,1) (5,1) %e A336134 (1,1,1,1) (3,1,1) (2,2,2) %e A336134 (1),(1,1,1) (2,1,1,1) (3,2,1) %e A336134 (2),(2,1) (4,1,1) %e A336134 (1,1,1,1,1) (2,2,1,1) %e A336134 (2),(1,1,1) (2),(2,2) %e A336134 (1),(1,1,1,1) (3,1,1,1) %e A336134 (1,1),(1,1,1) (2,1,1,1,1) %e A336134 (2),(2,1,1) %e A336134 (1,1,1,1,1,1) %e A336134 (2),(1,1,1,1) %e A336134 (1),(1,1,1,1,1) %e A336134 (1,1),(1,1,1,1) %e A336134 (1),(1,1),(1,1,1) %t A336134 splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; %t A336134 Table[Sum[Length[Select[splits[ctn],Less@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}] %o A336134 (PARI) a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f && r > t && t >= s, self()(r,m,t+1,0,0)) + self()(r,m-1,s,t,0) + self()(r-m,min(m,r-m), s,t+m,1))); recurse(n,n,0,0,0)} \\ _Andrew Howroyd_, Jan 18 2024 %Y A336134 The version with equal sums is A317715. %Y A336134 The version with strictly decreasing sums is A336135. %Y A336134 The version with weakly decreasing sums is A316245. %Y A336134 The version with different sums is A336131. %Y A336134 Starting with a composition gives A304961. %Y A336134 Starting with a strict partition gives A336133. %Y A336134 Partitions of partitions are A001970. %Y A336134 Partitions of compositions are A075900. %Y A336134 Compositions of compositions are A133494. %Y A336134 Compositions of partitions are A323583. %Y A336134 Cf. A006951, A063834, A279786, A305551, A318684, A323433, A336128, A336130. %K A336134 nonn %O A336134 0,3 %A A336134 _Gus Wiseman_, Jul 11 2020 %E A336134 a(21) onwards from _Andrew Howroyd_, Jan 18 2024