This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336135 #11 Jan 19 2024 02:19:36 %S A336135 1,1,2,5,8,16,29,50,79,135,213,337,522,796,1191,1791,2603,3799,5506, %T A336135 7873,11154,15768,21986,30565,42218,57917,78968,107399,144932,194889, %U A336135 261061,347773,461249,610059,802778,1053173,1377325,1793985,2329009,3015922,3891142 %N A336135 Number of ways to split an integer partition of n into contiguous subsequences with strictly decreasing sums. %H A336135 Andrew Howroyd, <a href="/A336135/b336135.txt">Table of n, a(n) for n = 0..50</a> %e A336135 The a(1) = 1 through a(5) = 16 splittings: %e A336135 (1) (2) (3) (4) (5) %e A336135 (1,1) (2,1) (2,2) (3,2) %e A336135 (1,1,1) (3,1) (4,1) %e A336135 (2),(1) (2,1,1) (2,2,1) %e A336135 (1,1),(1) (3),(1) (3,1,1) %e A336135 (1,1,1,1) (3),(2) %e A336135 (2,1),(1) (4),(1) %e A336135 (1,1,1),(1) (2,1,1,1) %e A336135 (2,2),(1) %e A336135 (3),(1,1) %e A336135 (3,1),(1) %e A336135 (1,1,1,1,1) %e A336135 (2,1),(1,1) %e A336135 (2,1,1),(1) %e A336135 (1,1,1),(1,1) %e A336135 (1,1,1,1),(1) %t A336135 splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; %t A336135 Table[Sum[Length[Select[splits[ctn],Greater@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}] %o A336135 (PARI) a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f, self()(r,min(m,t-1),t-1,0,0)) + self()(r,m-1,s,t,0) + if(t+m<=s, self()(r-m,min(m,r-m),s,t+m,1)))); recurse(n,n,n,0)} \\ _Andrew Howroyd_, Jan 18 2024 %Y A336135 The version with equal sums is A317715. %Y A336135 The version with strictly increasing sums is A336134. %Y A336135 The version with weakly increasing sums is A336136. %Y A336135 The version with weakly decreasing sums is A316245. %Y A336135 The version with different sums is A336131. %Y A336135 Starting with a composition gives A304961. %Y A336135 Starting with a strict partition gives A318684. %Y A336135 Partitions of partitions are A001970. %Y A336135 Partitions of compositions are A075900. %Y A336135 Compositions of compositions are A133494. %Y A336135 Compositions of partitions are A323583. %Y A336135 Cf. A006951, A063834, A279786, A305551, A323433, A336128, A336130, A336133. %K A336135 nonn %O A336135 0,3 %A A336135 _Gus Wiseman_, Jul 11 2020 %E A336135 a(21) onwards from _Andrew Howroyd_, Jan 18 2024