This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336136 #10 Jan 19 2024 02:19:59 %S A336136 1,1,3,5,11,15,31,40,73,98,158,204,340,420,629,819,1202,1494,2174, %T A336136 2665,3759,4688,6349,7806,10788,13035,17244,21128,27750,33499,43941, %U A336136 52627,67957,81773,103658,124047,158628,187788,235162,280188,349612,413120,513952,604568 %N A336136 Number of ways to split an integer partition of n into contiguous subsequences with weakly increasing sums. %H A336136 Andrew Howroyd, <a href="/A336136/b336136.txt">Table of n, a(n) for n = 0..60</a> %e A336136 The a(1) = 1 through a(5) = 15 splittings: %e A336136 (1) (2) (3) (4) (5) %e A336136 (1,1) (2,1) (2,2) (3,2) %e A336136 (1),(1) (1,1,1) (3,1) (4,1) %e A336136 (1),(1,1) (2,1,1) (2,2,1) %e A336136 (1),(1),(1) (2),(2) (3,1,1) %e A336136 (1,1,1,1) (2,1,1,1) %e A336136 (2),(1,1) (2),(2,1) %e A336136 (1),(1,1,1) (1,1,1,1,1) %e A336136 (1,1),(1,1) (2),(1,1,1) %e A336136 (1),(1),(1,1) (1),(1,1,1,1) %e A336136 (1),(1),(1),(1) (1,1),(1,1,1) %e A336136 (1),(1),(1,1,1) %e A336136 (1),(1,1),(1,1) %e A336136 (1),(1),(1),(1,1) %e A336136 (1),(1),(1),(1),(1) %t A336136 splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; %t A336136 Table[Sum[Length[Select[splits[ctn],LessEqual@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}] %o A336136 (PARI) a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f && r >= t && t >= s, self()(r,m,t,0,0)) + self()(r,m-1,s,t,0) + self()(r-m,min(m,r-m),s,t+m,1))); recurse(n,n,0,0)} \\ _Andrew Howroyd_, Jan 18 2024 %Y A336136 The version with weakly decreasing sums is A316245. %Y A336136 The version with equal sums is A317715. %Y A336136 The version with strictly increasing sums is A336134. %Y A336136 The version with strictly decreasing sums is A336135. %Y A336136 The version with different sums is A336131. %Y A336136 Starting with a composition gives A075900. %Y A336136 Partitions of partitions are A001970. %Y A336136 Partitions of compositions are A075900. %Y A336136 Compositions of compositions are A133494. %Y A336136 Compositions of partitions are A323583. %Y A336136 Cf. A006951, A063834, A279786, A304961, A305551, A318684, A323433, A336128, A336130, A336133. %K A336136 nonn %O A336136 0,3 %A A336136 _Gus Wiseman_, Jul 11 2020 %E A336136 a(21) onwards from _Andrew Howroyd_, Jan 18 2024