This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336137 #8 Jul 13 2020 22:21:51 %S A336137 1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,2,1,1,2,1,2,1,1,2,2,1,1, %T A336137 1,1,1,1,1,2,1,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,1,1,1,3,2,1,2,2,1,1,1,1, %U A336137 1,1,1,1,1,1,1,2,2,1,1,1,1,1,2,1,1,2,1 %N A336137 Number of set partitions of the binary indices of n with equal block-sums. %C A336137 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %H A336137 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A336137 The a(n) set partitions for n = 7, 59, 119, 367, 127: %e A336137 {123} {12456} {123567} {1234679} {1234567} %e A336137 {12}{3} {126}{45} {1236}{57} {12346}{79} {1247}{356} %e A336137 {15}{24}{6} {156}{237} {1249}{367} {1256}{347} %e A336137 {17}{26}{35} {1267}{349} {1346}{257} %e A336137 {169}{2347} {167}{2345} %e A336137 {16}{25}{34}{7} %e A336137 The binary indices of 382 are {2,3,4,5,6,7,9}, with equal block-sum set partitions: %e A336137 {{2,7},{3,6},{4,5},{9}} %e A336137 {{2,4,6},{3,9},{5,7}} %e A336137 {{2,7,9},{3,4,5,6}} %e A336137 {{2,3,4,9},{5,6,7}} %e A336137 {{2,3,6,7},{4,5,9}} %e A336137 {{2,4,5,7},{3,6,9}} %e A336137 {{2,3,4,5,6,7,9}} %e A336137 so a(382) = 7. %t A336137 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A336137 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A336137 Table[Length[Select[sps[bpe[n]],SameQ@@Total/@#&]],{n,0,100}] %Y A336137 These set partitions are counted by A035470. %Y A336137 The version for twice-partitions is A279787. %Y A336137 The version for partitions of partitions is A305551. %Y A336137 The version for factorizations is A321455. %Y A336137 The version for normal multiset partitions is A326518. %Y A336137 The version for distinct block-sums is A336138. %Y A336137 Set partitions of binary indices are A050315. %Y A336137 Normal multiset partitions with equal lengths are A317583. %Y A336137 Normal multiset partitions with equal averages are A326520. %Y A336137 Multiset partitions with equal block-sums are ranked by A326534. %Y A336137 Cf. A000110, A007837, A032011, A038041, A271619, A275780, A322794. %K A336137 nonn %O A336137 0,8 %A A336137 _Gus Wiseman_, Jul 12 2020