This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336138 #9 Jul 14 2020 05:38:31 %S A336138 1,1,1,2,1,2,2,4,1,2,2,5,2,4,5,12,1,2,2,5,2,5,4,13,2,4,5,13,5,13,13, %T A336138 43,1,2,2,5,2,5,5,13,2,5,4,14,5,13,14,42,2,4,5,13,5,14,13,43,5,13,14, %U A336138 45,14,44,44,160,1,2,2,5,2,5,5,14,2,5,5,14,4,13 %N A336138 Number of set partitions of the binary indices of n with distinct block-sums. %C A336138 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %H A336138 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A336138 The a(n) set partitions for n = 3, 7, 11, 15, 23: %e A336138 {12} {123} {124} {1234} {1235} %e A336138 {1}{2} {1}{23} {1}{24} {1}{234} {1}{235} %e A336138 {13}{2} {12}{4} {12}{34} {12}{35} %e A336138 {1}{2}{3} {14}{2} {123}{4} {123}{5} %e A336138 {1}{2}{4} {124}{3} {125}{3} %e A336138 {13}{24} {13}{25} %e A336138 {134}{2} {135}{2} %e A336138 {1}{2}{34} {15}{23} %e A336138 {1}{23}{4} {1}{2}{35} %e A336138 {1}{24}{3} {1}{25}{3} %e A336138 {14}{2}{3} {13}{2}{5} %e A336138 {1}{2}{3}{4} {15}{2}{3} %e A336138 {1}{2}{3}{5} %t A336138 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A336138 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A336138 Table[Length[Select[sps[bpe[n]],UnsameQ@@Total/@#&]],{n,0,100}] %Y A336138 The version for twice-partitions is A271619. %Y A336138 The version for partitions of partitions is (also) A271619. %Y A336138 These set partitions are counted by A275780. %Y A336138 The version for factorizations is A321469. %Y A336138 The version for normal multiset partitions is A326519. %Y A336138 The version for equal block-sums is A336137. %Y A336138 Set partitions with distinct block-lengths are A007837. %Y A336138 Set partitions of binary indices are A050315. %Y A336138 Twice-partitions with equal sums are A279787. %Y A336138 Partitions of partitions with equal sums are A305551. %Y A336138 Normal multiset partitions with equal block-lengths are A317583. %Y A336138 Multiset partitions with distinct block-sums are ranked by A326535. %Y A336138 Cf. A000110, A032011, A035470, A131632, A321455, A326026, A326514, A326517, A326518, A326534, A326565. %K A336138 nonn %O A336138 0,4 %A A336138 _Gus Wiseman_, Jul 12 2020