This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336139 #13 Jul 24 2020 22:18:33 %S A336139 1,1,1,5,9,17,45,81,181,397,965,1729,3673,7313,15401,34065,68617, %T A336139 135069,266701,556969,1061921,2434385,4436157,9120869,17811665, %U A336139 35651301,68949549,136796317,283612973,537616261,1039994921,2081261717,3980842425,7723253181,15027216049 %N A336139 Number of ways to choose a strict composition of each part of a strict composition of n. %C A336139 A strict composition of n is a finite sequence of distinct positive integers summing to n. %H A336139 Alois P. Heinz, <a href="/A336139/b336139.txt">Table of n, a(n) for n = 0..2000</a> %e A336139 The a(1) = 1 through a(5) = 17 splittings: %e A336139 (1) (2) (3) (4) (5) %e A336139 (1,2) (1,3) (1,4) %e A336139 (2,1) (3,1) (2,3) %e A336139 (1),(2) (1),(3) (3,2) %e A336139 (2),(1) (3),(1) (4,1) %e A336139 (1),(1,2) (1),(4) %e A336139 (1),(2,1) (2),(3) %e A336139 (1,2),(1) (3),(2) %e A336139 (2,1),(1) (4),(1) %e A336139 (1),(1,3) %e A336139 (1,2),(2) %e A336139 (1),(3,1) %e A336139 (1,3),(1) %e A336139 (2),(1,2) %e A336139 (2,1),(2) %e A336139 (2),(2,1) %e A336139 (3,1),(1) %t A336139 strs[n_]:=Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]; %t A336139 Table[Length[Join@@Table[Tuples[strs/@ctn],{ctn,strs[n]}]],{n,0,15}] %Y A336139 The version for partitions is A063834. %Y A336139 Row sums of A072574. %Y A336139 The version for non-strict compositions is A133494. %Y A336139 The version for strict partitions is A279785. %Y A336139 Multiset partitions of partitions are A001970. %Y A336139 Strict compositions are A032020. %Y A336139 Taking a composition of each part of a partition: A075900. %Y A336139 Taking a composition of each part of a strict partition: A304961. %Y A336139 Taking a strict composition of each part of a composition: A307068. %Y A336139 Splittings of partitions are A323583. %Y A336139 Compositions of parts of strict compositions are A336127. %Y A336139 Set partitions of strict compositions are A336140. %Y A336139 Cf. A318683, A318684, A319794, A336128, A336130, A336132. %K A336139 nonn %O A336139 0,4 %A A336139 _Gus Wiseman_, Jul 16 2020