This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336142 #19 Feb 13 2024 20:26:53 %S A336142 1,1,1,4,6,11,22,41,72,142,260,454,769,1416,2472,4465,7708,13314, %T A336142 23630,40406,68196,119646,203237,343242,586508,993764,1677187,2824072, %U A336142 4753066,7934268,13355658,22229194,36945828,61555136,102019156,168474033,279181966 %N A336142 Number of ways to choose a strict composition of each part of a strict integer partition of n. %C A336142 A strict composition of n is a finite sequence of distinct positive integers summing to n. %H A336142 Alois P. Heinz, <a href="/A336142/b336142.txt">Table of n, a(n) for n = 0..7725</a> %F A336142 G.f.: Product_{k >= 1} (1 + A032020(k)*x^k). %e A336142 The a(1) = 1 through a(5) = 11 ways: %e A336142 (1) (2) (3) (4) (5) %e A336142 (1,2) (1,3) (1,4) %e A336142 (2,1) (3,1) (2,3) %e A336142 (2),(1) (3),(1) (3,2) %e A336142 (1,2),(1) (4,1) %e A336142 (2,1),(1) (3),(2) %e A336142 (4),(1) %e A336142 (1,2),(2) %e A336142 (1,3),(1) %e A336142 (2,1),(2) %e A336142 (3,1),(1) %p A336142 b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0, %p A336142 `if`(n=0, p!, b(n, i-1, p)+b(n-i, min(n-i, i-1), p+1))) %p A336142 end: %p A336142 g:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, %p A336142 `if`(n=0, 1, g(n, i-1)+b(i$2, 0)*g(n-i, min(n-i, i-1)))) %p A336142 end: %p A336142 a:= n-> g(n$2): %p A336142 seq(a(n), n=0..38); # _Alois P. Heinz_, Jul 31 2020 %t A336142 strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&]; %t A336142 Table[Length[Join@@Table[Tuples[Join@@Permutations/@strptn[#]&/@ctn],{ctn,strptn[n]}]],{n,0,20}] %t A336142 (* Second program: *) %t A336142 b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, %t A336142 If[n == 0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]]; %t A336142 g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, 0, %t A336142 If[n == 0, 1, g[n, i-1] + b[i, i, 0]*g[n-i, Min[n-i, i-1]]]]; %t A336142 a[n_] := g[n, n]; %t A336142 a /@ Range[0, 38] (* _Jean-François Alcover_, May 20 2021, after _Alois P. Heinz_ *) %Y A336142 Multiset partitions of partitions are A001970. %Y A336142 Strict compositions are counted by A032020, A072574, and A072575. %Y A336142 Splittings of partitions are A323583. %Y A336142 Splittings of partitions with distinct sums are A336131. %Y A336142 Cf. A008289, A316245, A318684, A319794, A336128, A336130, A336132, A336135. %Y A336142 Partitions: %Y A336142 - Partitions of each part of a partition are A063834. %Y A336142 - Compositions of each part of a partition are A075900. %Y A336142 - Strict partitions of each part of a partition are A270995. %Y A336142 - Strict compositions of each part of a partition are A336141. %Y A336142 Strict partitions: %Y A336142 - Partitions of each part of a strict partition are A271619. %Y A336142 - Compositions of each part of a strict partition are A304961. %Y A336142 - Strict partitions of each part of a strict partition are A279785. %Y A336142 - Strict compositions of each part of a strict partition are A336142. %Y A336142 Compositions: %Y A336142 - Partitions of each part of a composition are A055887. %Y A336142 - Compositions of each part of a composition are A133494. %Y A336142 - Strict partitions of each part of a composition are A304969. %Y A336142 - Strict compositions of each part of a composition are A307068. %Y A336142 Strict compositions: %Y A336142 - Partitions of each part of a strict composition are A336342. %Y A336142 - Compositions of each part of a strict composition are A336127. %Y A336142 - Strict partitions of each part of a strict composition are A336343. %Y A336142 - Strict compositions of each part of a strict composition are A336139. %K A336142 nonn %O A336142 0,4 %A A336142 _Gus Wiseman_, Jul 18 2020