This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336143 #21 Dec 12 2020 04:55:36 %S A336143 8,10,12,13,14,15,16,18,21,22,24,26,27,28,30,32,33,34,35,36,38,39,40, %T A336143 43,44,45,46,48,50,51,52,54,55,56,57,58,60,62,63,65,66,68,69,70,72,73, %U A336143 74,76,77,78,80,81,82,84,85,87,88,90,91,92,93,94,95,96,98,99,100 %N A336143 Integers that are Brazilian and not Colombian. %C A336143 There are no squares of primes in the data (all squares of primes are not Brazilian except for 121 that is Brazilian, but 121 is Colombian). %H A336143 Giovanni Resta, <a href="http://www.numbersaplenty.com/set/self_number/">Self or Colombian number</a>, Numbers Aplenty. %H A336143 Wikipédia, <a href="https://fr.wikipedia.org/wiki/Nombre_br%C3%A9silien">Nombre brésilien</a> (in French). %H A336143 <a href="/index/Br#Brazilian_numbers">Index to sequences related to Brazilian Numbers</a>. %H A336143 <a href="/index/Coi#Colombian">Index to sequences related to Colombian Numbers</a>. %e A336143 15 is a term because 15 = 12 + (sum of digits of 12), so 15 is not Colombian and 15 = 33_4, so 15 is Brazilian. %t A336143 brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[ IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; n = 100; Select[Union@Table[Plus @@ IntegerDigits[k] + k, {k, 1, n}], # <= n && brazQ[#] &] (* _Amiram Eldar_, Jul 10 2020 *) %Y A336143 Intersection of A125134 (Brazilian) and A176995 (not Colombian). %Y A336143 Cf. A003052 (Colombian), A333858 (Brazilian and Colombian), this sequence (Brazilian not Colombian), A336144 (Colombian not Brazilian). %K A336143 nonn,base %O A336143 1,1 %A A336143 _Bernard Schott_, Jul 10 2020