This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336144 #16 Dec 12 2020 04:55:46 %S A336144 1,3,5,9,53,97,233,277,367,389,457,479,547,569,613,659,727,839,883, %T A336144 929,1021,1087,1109,1223,1289,1447,1559,1627,1693,1783,1873,2099,2213, %U A336144 2347,2437,2459,2503,2549,2593,2617,2683,2729,2819,2953,3023,3067,3089,3313,3359 %N A336144 Integers that are Colombian and not Brazilian. %C A336144 There are no even terms because 2, 4 and 6 are not Colombian as 2 = 1 + (sum of digits of 1), 4 = 2 + (sum of digits of 2) and 6 = 3 + (sum of digits of 3), then every even integer >= 8 is Brazilian. %H A336144 Giovanni Resta, <a href="http://www.numbersaplenty.com/set/self_number/">Self or Colombian number</a>, Numbers Aplenty. %H A336144 Wikipédia, <a href="https://fr.wikipedia.org/wiki/Nombre_br%C3%A9silien">Nombre brésilien</a> (in French). %H A336144 <a href="/index/Coi#Colombian">Index to sequences related to Colombian Numbers</a>. %H A336144 <a href="/index/Br#Brazilian_numbers">Index to sequences related to Brazilian Numbers</a>. %e A336144 233 is a term because 233 is not of the form m + (sum of digits of m) for any m < 233, so 233 is Colombian and there is no Brazilian representation for 233. %t A336144 brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; n = 4000; Select[Complement[Range[n], Union @ Table[Plus @@ IntegerDigits[k] + k, {k, 1, n}]], !brazQ[#] &] (* _Amiram Eldar_, Jul 14 2020 *) %Y A336144 Intersection of A003052 (Colombian) and A220570 (non-Brazilian). %Y A336144 Cf. A125134 (Brazilian), A333858 (Brazilian and Colombian), A336143 (Brazilian and not Colombian), this sequence (Colombian and not Brazilian). %K A336144 nonn,base %O A336144 1,2 %A A336144 _Bernard Schott_, Jul 14 2020