This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336158 #17 Sep 17 2022 02:01:52 %S A336158 1,1,2,1,2,2,2,1,4,2,2,2,2,2,6,1,2,4,2,2,6,2,2,2,4,2,8,2,2,6,2,1,6,2, %T A336158 6,4,2,2,6,2,2,6,2,2,12,2,2,2,4,4,6,2,2,8,6,2,6,2,2,6,2,2,12,1,6,6,2, %U A336158 2,6,6,2,4,2,2,12,2,6,6,2,2,16,2,2,6,6,2,6,2,2,12,6,2,6,2,6,2,2,4,12,4,2,6,2,2,30 %N A336158 The least number with the prime signature of the odd part of n: a(n) = A046523(A000265(n)). %H A336158 Antti Karttunen, <a href="/A336158/b336158.txt">Table of n, a(n) for n = 1..65537</a> %F A336158 a(n) = A046523(A000265(n)) = A046523(A064989(n)). %F A336158 A000005(a(n)) = A001227(n). %F A336158 A001221(a(n)) = A005087(n). %F A336158 A001222(a(n)) = A087436(n). %o A336158 (PARI) %o A336158 A000265(n) = (n>>valuation(n,2)); %o A336158 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 %o A336158 A336158(n) = A046523(A000265(n)); %o A336158 (Python) %o A336158 from math import prod %o A336158 from sympy import factorint, prime %o A336158 def A336158(n): return prod(prime(i+1)**e for i,e in enumerate(sorted(factorint(n>>(~n&n-1).bit_length()).values(),reverse=True))) # _Chai Wah Wu_, Sep 16 2022 %Y A336158 Cf. A000265, A001227, A005087, A046523, A064989, A087436, A336156, A336157, A336159, A336160. %K A336158 nonn %O A336158 1,3 %A A336158 _Antti Karttunen_, Jul 11 2020