cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336167 Irregular triangular array read by rows. T(n,k) is the number of forests on n unlabeled nodes with exactly k distinct isomorphism classes of trees.

This page as a plain text file.
%I A336167 #8 Jul 14 2020 23:16:11
%S A336167 1,0,1,0,2,0,2,1,0,4,2,0,4,6,0,9,10,1,0,12,22,3,0,27,40,9,0,49,80,24,
%T A336167 0,111,163,53,2,0,236,342,126,6,0,562,738,280,21,0,1302,1662,634,60,0,
%U A336167 3172,3838,1423,165,1,0,7746,9041,3308,412,7,0,19347,21812,7676,1044,26
%N A336167 Irregular triangular array read by rows.  T(n,k) is the number of forests on n unlabeled nodes with exactly k distinct isomorphism classes of trees.
%F A336167 O.g.f.: Product_{n>=1} (y/(1 - x^n) - y + 1)^A005195(n).
%e A336167 1,
%e A336167 0, 1,
%e A336167 0, 2,
%e A336167 0, 2,   1,
%e A336167 0, 4,   2,
%e A336167 0, 4,   6,
%e A336167 0, 9,   10,  1,
%e A336167 0, 12,  22,  3,
%e A336167 0, 27,  40,  9,
%e A336167 0, 49,  80,  24,
%e A336167 0, 111, 163, 53,  2.
%t A336167 nn = 25; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol =  SolveAlways[0 == Series[ f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; b = Drop[Flatten[CoefficientList[Series[r[x] - 1/2 (r[x]^2 - r[x^2]), {x, 0, nn}], x]], 1]; h[list_] := Prepend[Select[list, # > 0 &], 0];
%t A336167 Prepend[Drop[Map[h, CoefficientList[Series[Product[(y/(1 - x^k) - y + 1)^b[[k]], {k, 1, nn}], {x, 0, nn}], {x, y}]], 1], {1}] // Grid
%Y A336167 Cf. A035054 (column k=1), A005195 (row sums).
%K A336167 nonn,tabf
%O A336167 0,5
%A A336167 _Geoffrey Critzer_, Jul 10 2020