A336174 Number of non-symmetric binary n X n matrices M over the reals such that M^2 is the transpose of M.
0, 0, 0, 2, 16, 80, 360, 1680, 8064, 39872, 209920, 1168640, 6779520, 41403648, 265434624, 1765487360, 12227461120, 88163164160, 656547803136, 5054718763008, 40261284495360, 330010833797120, 2783003768258560, 24166721457815552, 215318925878132736, 1966855934150246400
Offset: 0
Keywords
Examples
a(3) = 2 because [0,1,0] [0,1,0] [0,0,1] [0,0,1] * [0,0,1] = [1,0,0] [1,0,0] [1,0,0] [0,1,0], and [0,0,1] [0,0,1] [0,1,0] [1,0,0] * [1,0,0] = [0,0,1] [0,1,0] [0,1,0] [1,0,0].
Programs
-
Maple
a := n -> 2^n*(add(n!/(24^k*k!*(n-3*k)!), k=0..n/3) - 1): seq(a(n), n=0..25); # Alternative: gf := exp(x*(x^2+6)/3) - exp(2*x): ser := series(gf,x,32): seq(n!*coeff(ser,x,n), n = 0..25); # Peter Luschny, Jun 05 2021
-
PARI
m(n, t) = matrix(n, n, i, j, (t>>(i*n+j-n-1))%2) a(n) = sum(t = 0, 2^n^2-1, m(n, t)^2 == m(n, t)~) - 2^n for(n = 0, 9, print1(a(n), ", "))
Formula
a(n) = Sum_{k=0..n} A001471(k) * binomial(n, k). [Previously conjectured, for a proof see the link in A344912.]
From Peter Luschny, Jun 05 2021: (Start)
a(n) = 2^n*(add(n!/(24^k * k! * (n - 3*k)!), k=0..n/3) - 1).
a(n) = 2^n*(hypergeom([-n/3, (1 - n)/3, (2 - n)/3], [], -9/8) - 1).
a(n) = [x^n] exp(x*(x^2 + 6)/3) - exp(2*x). (End)
D-finite with recurrence (-n+3)*a(n) +4*(n-2)*a(n-1) +4*(-n+1)*a(n-2) +(n-1)*(n-2)*(n-3)*a(n-3) -2*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 27 2022
Extensions
More terms from Peter Luschny, Jun 05 2021
Comments