This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336180 #28 Dec 22 2020 15:15:59 %S A336180 1,0,-11,136,-639,-25624,1133245,-27431424,259448833,17402599792, %T A336180 -1405909697499,63884679938960,-1830503703899519,-5324845289379264, %U A336180 5494299851213052685,-496909924804074650624,30201149245542631276545,-1236819213672144144878752,5410434345252588202534741 %N A336180 a(n) = Sum_{k=0..n} (-n)^k * binomial(n,k)^3. %H A336180 Seiichi Manyama, <a href="/A336180/b336180.txt">Table of n, a(n) for n = 0..375</a> %H A336180 Vaclav Kotesovec, <a href="/A336180/a336180.jpg">Plot of |a(n)/a(n-1)|/n for n = 1..1000</a> %F A336180 a(n) = hypergeom([-n, -n, -n], [1, 1], n). - _Peter Luschny_, Dec 22 2020 %p A336180 a := n -> hypergeom([-n, -n, -n], [1, 1], n): %p A336180 seq(simplify(a(n)), n=0..18); # _Peter Luschny_, Dec 22 2020 %t A336180 Array[Function[n, 1 + Sum[(-n)^k Binomial[n, k]^3, {k, n}]], 19, 0] (* _Jan Mangaldan_, Jul 14 2020 *) %o A336180 (PARI) {a(n) = sum(k=0, n, (-n)^k*binomial(n, k)^3)} %Y A336180 Main diagonal of A336179. %Y A336180 Cf. A241247, A307885. %K A336180 sign %O A336180 0,3 %A A336180 _Seiichi Manyama_, Jul 10 2020