This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336187 #12 Jul 11 2020 07:34:02 %S A336187 1,1,1,1,2,1,1,3,4,1,1,4,13,8,1,1,5,34,63,16,1,1,6,81,352,321,32,1,1, %T A336187 7,186,1685,3946,1683,64,1,1,8,421,7416,38401,46744,8989,128,1,1,9, %U A336187 946,30835,328146,963525,573616,48639,256,1,1,10,2113,122816,2590225,16971876,25346385,7217536,265729,512,1 %N A336187 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j)^k. %C A336187 Column k is the diagonal of the rational function 1 / (Product_{j=1..k} (1-x_j) - k * Product_{j=1..k} x_j) for k>0. %e A336187 Square array begins: %e A336187 1, 1, 1, 1, 1, 1, ... %e A336187 1, 2, 3, 4, 5, 6, ... %e A336187 1, 4, 13, 34, 81, 186, ... %e A336187 1, 8, 63, 352, 1685, 7416, ... %e A336187 1, 16, 321, 3946, 38401, 328146, ... %e A336187 1, 32, 1683, 46744, 963525, 16971876, ... %t A336187 Unprotect[Power]; 0^0 = 1; T[n_, k_] := Sum[ k^j*Binomial[n, j]^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Jul 11 2020 *) %Y A336187 Columns k=0-3 give: A000012, A000079, A001850, A206180. %Y A336187 Main diagonal gives A336188. %Y A336187 Cf. A307883, A336163. %K A336187 nonn,tabl %O A336187 0,5 %A A336187 _Seiichi Manyama_, Jul 11 2020