cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336193 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, n + a(n) can be computed without carry in base 10.

This page as a plain text file.
%I A336193 #10 Jul 13 2020 21:33:25
%S A336193 1,2,3,4,10,11,12,20,30,5,6,7,13,14,21,22,31,40,50,8,15,16,23,24,32,
%T A336193 33,41,51,60,9,17,25,26,34,42,43,52,61,100,18,27,35,36,44,53,101,102,
%U A336193 110,120,19,28,37,45,103,104,111,112,121,130,29,38,105,106,113
%N A336193 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, n + a(n) can be computed without carry in base 10.
%C A336193 This sequence is a decimal variant of A238757.
%C A336193 This sequence is a self-inverse permutation of the natural numbers.
%H A336193 Rémy Sigrist, <a href="/A336193/b336193.txt">Table of n, a(n) for n = 1..10000</a>
%H A336193 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A336193 A007953(n + a(n)) = A007953(n) + A007953(a(n)).
%e A336193 The first terms, alongside n + a(n), are:
%e A336193   n   a(n)  n+a(n)
%e A336193   --  ----  ------
%e A336193    1     1       2
%e A336193    2     2       4
%e A336193    3     3       6
%e A336193    4     4       8
%e A336193    5    10      15
%e A336193    6    11      17
%e A336193    7    12      19
%e A336193    8    20      28
%e A336193    9    30      39
%e A336193   10     5      15
%e A336193   11     6      17
%e A336193   12     7      19
%e A336193   13    13      26
%e A336193   14    14      28
%e A336193   15    21      36
%o A336193 (PARI) s=0; for (n=1, 64, for (v=1, oo, if (!bittest(s,v) && sumdigits(n+v)==sumdigits(n)+sumdigits(v), print1(v", "); s+=2^v; break)))
%Y A336193 Cf. A007953, A238757, A252022.
%K A336193 nonn,base,look
%O A336193 1,2
%A A336193 _Rémy Sigrist_, Jul 11 2020