cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336194 Table read by antidiagonals upwards: T(n,k) = (n - 1)*k^3 - 1, with n > 1 and k > 0.

This page as a plain text file.
%I A336194 #41 Sep 24 2020 04:15:49
%S A336194 0,1,7,2,15,26,3,23,53,63,4,31,80,127,124,5,39,107,191,249,215,6,47,
%T A336194 134,255,374,431,342,7,55,161,319,499,647,685,511,8,63,188,383,624,
%U A336194 863,1028,1023,728,9,71,215,447,749,1079,1371,1535,1457,999,10,79,242,511,874,1295,1714,2047,2186,1999,1330
%N A336194 Table read by antidiagonals upwards: T(n,k) = (n - 1)*k^3 - 1, with n > 1 and k > 0.
%C A336194 T(n, k) is a sharp upper bound of the tree width of a graph G that does not contain a clique on n vertices nor a minimal separator of size larger than k (see Theorem 2.1 in Pilipczuk et al.).
%C A336194 All the square matrices starting at top left of the table T are singular except for the 2 X 2 submatrix: det([0, 7; 1, 15]) = -7.
%H A336194 Marcin Pilipczuk, Ni Luh Dewi Sintiari, Stéphan Thomassé and Nicolas Trotignon, <a href="https://arxiv.org/abs/2001.01607">(Theta, triangle)-free and (even hole, K4)-free graphs. Part 2 : bounds on treewidth</a>, arXiv:2001.01607 [cs.DM], 2020. See p. 7.
%H A336194 <a href="/index/Tra#trees">Index entries for sequences related to trees</a>.
%F A336194 O.g.f.: x^2*y*(y*(7 - 2*y + y^2) + x*(1 - y)^3)/((1 - x)^2*(1 - y)^4).
%F A336194 E.g.f.: -1 + exp(x) - x + exp(y)*x + exp(y)*(1 + y + 3*y^2 + y^3) + exp(x + y)*(-1 +(-1 + x)*y*(1 + 3*y + y^2)).
%F A336194 T(n, k) = n*A000578(k) - A001093(k).
%F A336194 T(n, n) = A085537(n) - 1 for n > 1.
%F A336194 T(n, k) = T(n+1, 1)*T(2, k) + T(n, 1).
%e A336194 The table starts at row n = 2 and column k = 1 as:
%e A336194 0   7   26   63  124   215 ...
%e A336194 1  15   53  127  249   431 ...
%e A336194 2  23   80  191  374   647 ...
%e A336194 3  31  107  255  499   863 ...
%e A336194 4  39  134  319  624  1079 ...
%e A336194 5  47  161  383  749  1295 ...
%e A336194 ...
%t A336194 T[n_,k_]:=(n-1)*k^3-1; Flatten[Table[T[n+1-k,k],{n,2,12},{k,1,n-1}]]
%o A336194 (PARI) T(n, k) = (n - 1)*k^3 - 1
%Y A336194 Cf. A000578, A001093, A001477 (k = 1), A004771 (k = 2), A068601 (n = 2), A085537, A109129, A123865 (main diagonal), A325543, A325612.
%K A336194 nonn,easy,tabl
%O A336194 2,3
%A A336194 _Stefano Spezia_, Jul 11 2020