This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336201 #18 May 01 2021 17:40:09 %S A336201 1,1,1,1,0,1,1,-1,0,1,1,-2,-3,0,1,1,-3,-14,11,0,1,1,-4,-47,136,1,0,1, %T A336201 1,-5,-134,909,106,-81,0,1,1,-6,-347,4736,3585,-8492,141,0,1,1,-7, %U A336201 -846,21655,61906,-323523,35344,363,0,1,1,-8,-1983,91512,771601,-8065624,2201809,395008,-1791,0,1 %N A336201 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} (-k)^j * binomial(n,j)^k. %C A336201 Column k is the diagonal of the rational function 1 / (Product_{j=1..k} (1-x_j) + k * Product_{j=1..k} x_j) for k>0. %e A336201 Square array begins: %e A336201 1, 1, 1, 1, 1, 1, ... %e A336201 1, 0, -1, -2, -3, -4, ... %e A336201 1, 0, -3, -14, -47, -134, ... %e A336201 1, 0, 11, 136, 909, 4736, ... %e A336201 1, 0, 1, 106, 3585, 61906, ... %e A336201 1, 0, -81, -8492, -323523, -8065624, ... %t A336201 T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j]^k, {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, May 01 2021 *) %Y A336201 Columns k=0-3 give: A000012, A000007, (-1)^n*A098332(n), A336182. %Y A336201 Main diagonal gives A336202. %Y A336201 Cf. A309010, A336179, A336187. %K A336201 sign,tabl %O A336201 0,12 %A A336201 _Seiichi Manyama_, Jul 11 2020