This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336214 #18 Jul 15 2020 10:24:38 %S A336214 1,1,8,270,41984,30706250,94770093312,1336016204844832, %T A336214 76829717664330940416,19838680914222199482800274, %U A336214 20521247958509575370600000000000,94285013320530947020636486516362047300,1715947732437668013396578734960052732361179136 %N A336214 a(n) = Sum_{k=0..n} k^n * binomial(n,k)^n, with a(0)=1. %H A336214 Seiichi Manyama, <a href="/A336214/b336214.txt">Table of n, a(n) for n = 0..56</a> %F A336214 a(n) ~ c * exp(-1/4) * 2^(n^2 - n/2) * n^(n/2) / Pi^(n/2), where c = Sum_{k = -infinity..infinity} exp(-2*k*(k-1)) = exp(1/2) * sqrt(Pi/2) * EllipticTheta(3, -Pi/2, exp(-Pi^2/2)) = 2.036643566277677716389243890291939003151565... if n is even and c = Sum_{k = -infinity..infinity} exp(-2*k^2 + 1/2) = exp(1/2) * EllipticTheta(3, 0, exp(-2)) = 2.096087809957308346119920713317351288828811... if n is odd. %F A336214 a(n) = n^n * A328812(n-1) for n > 0. - _Seiichi Manyama_, Jul 15 2020 %t A336214 Flatten[{1, Table[Sum[k^n*Binomial[n, k]^n, {k, 1, n}], {n, 1, 15}]}] %o A336214 (PARI) a(n) = if (n==0, 1, sum(k=0, n, k^n * binomial(n,k)^n)); \\ _Michel Marcus_, Jul 13 2020 %Y A336214 Cf. A072034, A086331, A167008, A167010, A328812, A336188, A336204, A336212, A336213. %K A336214 nonn %O A336214 0,3 %A A336214 _Vaclav Kotesovec_, Jul 12 2020