A336223 Numbers k such that the largest square dividing k is a unitary divisor of k and its square root has an even number of distinct prime divisors.
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100, 101, 102, 103
Offset: 1
Keywords
Examples
36 is a term since the largest square dividing 36 is 36, which is a unitary divisor, sqrt(36) = 6, 6 = 2 * 3 has 2 distinct prime divisors, and 2 is even.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eckford Cohen, Some asymptotic formulas in the theory of numbers, Trans. Amer. Math. Soc., Vol. 112 (1964), pp. 214-227.
Crossrefs
Programs
-
Mathematica
seqQ[n_] := EvenQ @ Length[(e = Select[FactorInteger[n][[;; , 2]], # > 1 &])] && AllTrue[e, EvenQ[#] &]; Select[Range[100], seqQ]
Comments