cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336223 Numbers k such that the largest square dividing k is a unitary divisor of k and its square root has an even number of distinct prime divisors.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100, 101, 102, 103
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2020

Keywords

Comments

First differs from A333634 at n = 47.
Terms k of A335275 such that A000188(k) is a term of A030231.
Numbers whose powerful part (A057521) is a square term of A030231.
The squarefree numbers (A005117) are terms of this sequence since if k is squarefree, then the largest square dividing k is 1 which is a unitary divisor, sqrt(1) = 1 has 0 prime divisors, and 0 is even.
The asymptotic density of this sequence is (Product_{p prime} (1 - 1/(p^2*(p+1))) + Product_{p prime} (1 - (2*p+1)/(p^2*(p+1))))/2 = (0.881513... + 0.394391...)/2 = 0.637952807730728551636349961980617856650450613867264... (Cohen, 1964; the first product is A065465).

Examples

			36 is a term since the largest square dividing 36 is 36, which is a unitary divisor, sqrt(36) = 6, 6 = 2 * 3 has 2 distinct prime divisors, and 2 is even.
		

Crossrefs

Intersection of A333634 and A335275.

Programs

  • Mathematica
    seqQ[n_] := EvenQ @ Length[(e = Select[FactorInteger[n][[;; , 2]], # > 1 &])] && AllTrue[e, EvenQ[#] &]; Select[Range[100], seqQ]