cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336224 Numbers k such that the largest square dividing k is a unitary divisor of k and its square root has an even number of prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2020

Keywords

Comments

Terms k of A335275 such that A000188(k) is a term of A028260.
Numbers whose powerful part (A057521) is the square of a term of A028260.
The squarefree numbers (A005117) are terms of this sequence since if k is squarefree, then the largest square dividing k is 1 which is a unitary divisor, sqrt(1) has 0 prime divisors, and 0 is even.
The asymptotic density of this sequence is (5 * Product_{p prime} (1 - 1/(p^2*(p+1))) + 2 * Product_{p prime} (1 + 1/(p^2*(p+1))))/10 = (5 * 0.881513... + 2 * 1.125606...)/10 = 0.665878294481337275662425136416469977597382409701642... (Cohen, 1964; the first product is A065465).

Examples

			16 is a term since the largest square dividing 16 is 16, which is a unitary divisor, sqrt(16) = 4, 4 = 2 * 2 has 2 prime divisors, and 2 is even.
		

Crossrefs

Intersection of A335275 and A336222.

Programs

  • Mathematica
    seqQ[n_] := AllTrue[(e = FactorInteger[n][[;; , 2]]), # == 1 || EvenQ[#] &] && EvenQ @ Total[Select[e, # > 1 &]/2]; Select[Range[100], seqQ]