This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336235 #19 Jul 14 2020 22:53:00 %S A336235 17,33,35,41,43,45,55,59,61,63,65,67,69,71,73,77,79,81,83,87,89,91,93, %T A336235 95,101,115,117,131,133,135,137,139,141,143,145,147,149,151,153,155, %U A336235 157,159,181,183,189,191,193,275,277,281,283,291,341,355,521,523,525,527 %N A336235 Numbers m such that Sum_{i=3..m} (prime(i) modulo 6) = 3*m, where prime(i) is the i-th prime. %C A336235 By the Prime Number Theorem for arithmetic progressions, all nonzero residue classes are equiprobable. In particular, asymptotically, as m -> oo the Sum_{i=r..m} (prime(i) modulo k) = m*k/2. For this sequence this says Sum_{i=3..m} (prime(i) modulo 6) = m*3. %H A336235 A. Granville and G. Martin, <a href="https://arxiv.org/abs/math/0408319">Prime number races</a>, arXiv:math/0408319 [math.NT], 2004. %e A336235 For m = 17 we have Sum_{i=3..17} (prime(i) modulo 6) = 5 + 1 + 5 + 1 + 5 + 1 + 5 + 5 + 1 + 1 + 5 + 1 + 5 + 5 + 5 = 3*17. %t A336235 s = Accumulate[Mod[Select[Range[5, 200000], PrimeQ], 6]]; 2 + Position[s - 3 * Range[Length[s]], 6] // Flatten (* _Amiram Eldar_, Jul 13 2020 *) %o A336235 (PARI) isok(m) = sum(i=3, m, prime(i)%6) == 3*m; \\ _Michel Marcus_, Jul 13 2020 %Y A336235 Cf. A000040, A039704. %K A336235 nonn %O A336235 1,1 %A A336235 _Ctibor O. Zizka_, Jul 13 2020 %E A336235 More terms from _Michel Marcus_, Jul 13 2020