This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336246 #53 Sep 30 2021 04:24:57 %S A336246 0,1,1,2,3,2,9,11,7,3,44,53,32,13,4,265,309,181,71,21,5,1854,2119, %T A336246 1214,465,134,31,6,14833,16687,9403,3539,1001,227,43,7,133496,148329, %U A336246 82508,30637,8544,1909,356,57,8,1334961,1468457,808393,296967,81901,18089,3333,527,73,9 %N A336246 Array read by upwards antidiagonals: T(n,k) is the number of ways to place n persons on different seats such that each person number p, 1 <= p <= n, differs from the seat number s(p), 1 <= s(p) <= n+k, k >= 0. %C A336246 T(n,0) = !n (subfactorial) is the number of derangements or fixed-point-free permutations, see A000166(n) below: n persons are placed on n seats such that no person sits on a seat with the same number. The generalization of a permutation is a variation (n persons and n+k seats such that k seats remain free). In this sense, T(n,k) is the number of fixed-point-free variations. I am rather sure that such variations have been examined, but I cannot find a reference. %C A336246 Some subsequences T(n,k) with k=const: %C A336246 T(n,0) = A000166(n); T(n,1) = A000255(n); T(n,2) = A000153(n-1); %C A336246 T(n,3) = A000261(n-1); T(n,4) = A001909(n-3); T(n,5) = A001910(n-4); %C A336246 T(n,6) = A176732(n); T(n,7) = A176733(n); T(n,8) = A176734(n); %C A336246 T(n,9) = A176735(n); T(n,10) = A176736(n). %H A336246 Gerhard Kirchner, <a href="/A336246/a336246.pdf">Fixed-point-free variations</a> %F A336246 T(n,k) = (n+k-1)*T(n-1,k) + (n-1)*T(n-2,k) for n >= 2, k >= 0 with T(0,k)=1 and T(1,k)=k. %F A336246 For n=0, there is one empty variation. T(0,k) is used for the recurrence only, not in the table. For n=1, the person can be placed on seat number 2..k+1 (if k > 0). %F A336246 You also find the recurrence in the formula section of A000166 (k=0) and in the name section of the other sequences listed above (1 <= k <= 10). Some sequences have a different offset. %F A336246 T(n,k) = Sum_{r=0..n} (-1)^r*binomial(n,r)*(n+k-r)!/k!. %F A336246 Proofs see link. %e A336246 For k=1, the n-tuples of seat numbers are: %e A336246 - for n=1: 2 => T(1,1) = 1. %e A336246 - for n=2: 21, 23, 31 => T(2,1) = 3, %e A336246 21: person 1 sits on seat 2 and vice versa. %e A336246 A counterexample is 13 because person 1 would sit on seat 1. %e A336246 - for n=3: 214,231,234,241,312,314,341,342,412,431,432 => T(3,1) = 11. %e A336246 Array begins: %e A336246 0 1 2 3 4 ... %e A336246 1 3 7 13 21 ... %e A336246 2 11 32 71 134 ... %e A336246 9 53 181 465 1001 ... %e A336246 44 309 1214 3539 8544 ... %e A336246 .. ... .... .... .... %o A336246 (Maxima) %o A336246 block(nr: 0, k: -1, mmax: 55, %o A336246 /*First mmax terms are returned, recurrence used*/ %o A336246 a: makelist(0, n, 1, mmax), %o A336246 while nr<mmax do %o A336246 (v1:1, k: k+1, n:0, m: (k+1)*(k+2)/2, %o A336246 while m<=mmax do (n:n+1, %o A336246 if n=1 then v2: k else (v2: (n+k-1)*v1+(n-1)*v0, m: m+n+k-1), %o A336246 if m<=mmax then (a[m]: v2, nr: nr+1, v0: v1, v1: v2))), %o A336246 return(a)); %o A336246 (Maxima) %o A336246 block(n: 1, k: 0, mmax: 55, %o A336246 /*First mmax terms are returned, explicit formula used*/ %o A336246 a: makelist(0, n, 1, mmax), %o A336246 for m from 1 thru mmax do (su: 0, %o A336246 for r from 0 thru n do su: su+(-1)^r*binomial(n,r)*(n+k-r)!/k!, %o A336246 a[m]: su, if n=1 then (n: k+2, k: 0) else (n: n-1, k: k+1)), %o A336246 return(a)); %Y A336246 Cf. A000166, A000255, A000153, A000261, A001909, A001910, A176732, A176733, A176734, A176735, A176736. %K A336246 nonn,tabl %O A336246 1,4 %A A336246 _Gerhard Kirchner_, Jul 19 2020