cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336250 a(n) = (n!)^n * Sum_{k=1..n} (-1)^(k+1) / k^n.

This page as a plain text file.
%I A336250 #8 Jul 14 2020 21:40:01
%S A336250 0,1,3,197,313840,24191662624,137300308036448256,
%T A336250 81994640912971156525105152,6958651785463110878359050928999366656,
%U A336250 108902755985567407887534498777329973193771818418176,395560567918154447056086270973712023435510589158871531520000000000
%N A336250 a(n) = (n!)^n * Sum_{k=1..n} (-1)^(k+1) / k^n.
%F A336250 a(n) = (n!)^n * [x^n] -polylog(n,-x) / (1 - x).
%t A336250 Table[(n!)^n Sum[(-1)^(k + 1)/k^n, {k, 1, n}], {n, 0, 10}]
%t A336250 Table[(n!)^n SeriesCoefficient[-PolyLog[n, -x]/(1 - x), {x, 0, n}], {n, 0, 10}]
%o A336250 (PARI) a(n) = (n!)^n * sum(k=1, n, (-1)^(k+1) / k^n); \\ _Michel Marcus_, Jul 14 2020
%Y A336250 Cf. A024167, A036740, A060943, A142999.
%K A336250 nonn
%O A336250 0,3
%A A336250 _Ilya Gutkovskiy_, Jul 14 2020