This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336255 #12 Jul 18 2020 03:06:33 %S A336255 1,0,2,0,0,3,6,0,0,0,4,24,12,24,0,0,0,0,5,60,120,140,120,60,120,0,0,0, %T A336255 0,0,6,120,540,840,1470,720,1440,840,720,360,720,0,0,0,0,0,0,7,210, %U A336255 1680,4620,9240,11382,13440,14700,10920,12810,10080,10080,5880,5040,2520,5040 %N A336255 Irregular triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes with path length exactly k, n>=1, 0<=k<=C(n,2). %C A336255 The path length of a tree is the distance from the root to a node summed over all nodes in the tree. %H A336255 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 185. %F A336255 E.g.f. satisfies A(x,y) = x*exp(A(y*x,y)). %F A336255 Sum_{k=n-1..C(n,2)} T(n,k)*k = A001864(n). %e A336255 1, %e A336255 0, 2, %e A336255 0, 0, 3, 6, %e A336255 0, 0, 0, 4, 24, 12, 24, %e A336255 0, 0, 0, 0, 5, 60, 120, 140, 120, 60, 120 %t A336255 nn = 7; f[z_, u_] := Sum[Sum[a[n, k] u^k z^n/n!, {k, 0, Binomial[n, 2]}], {n, 1, %t A336255 nn}]; sol = SolveAlways[ Series[0 == f[z, u] - z Exp[f[u z, u]] , {z, 0, nn}], {z, u}];Level[Table[Table[a[n, k], {k, 0, Binomial[n, 2]}], {n, 1, nn}] /. %t A336255 sol, {2}] // Grid %Y A336255 Row sums give A000169. %Y A336255 Cf. A001864. %K A336255 nonn,tabf %O A336255 1,3 %A A336255 _Geoffrey Critzer_, Jul 14 2020