cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336255 Irregular triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes with path length exactly k, n>=1, 0<=k<=C(n,2).

This page as a plain text file.
%I A336255 #12 Jul 18 2020 03:06:33
%S A336255 1,0,2,0,0,3,6,0,0,0,4,24,12,24,0,0,0,0,5,60,120,140,120,60,120,0,0,0,
%T A336255 0,0,6,120,540,840,1470,720,1440,840,720,360,720,0,0,0,0,0,0,7,210,
%U A336255 1680,4620,9240,11382,13440,14700,10920,12810,10080,10080,5880,5040,2520,5040
%N A336255 Irregular triangular array read by rows.  T(n,k) is the number of rooted labeled trees on n nodes with path length exactly k, n>=1, 0<=k<=C(n,2).
%C A336255 The path length of a tree is the distance from the root to a node summed over all nodes in the tree.
%H A336255 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 185.
%F A336255 E.g.f. satisfies A(x,y) = x*exp(A(y*x,y)).
%F A336255 Sum_{k=n-1..C(n,2)} T(n,k)*k = A001864(n).
%e A336255 1,
%e A336255 0, 2,
%e A336255 0, 0, 3, 6,
%e A336255 0, 0, 0, 4, 24, 12, 24,
%e A336255 0, 0, 0, 0, 5,  60, 120, 140, 120, 60, 120
%t A336255 nn = 7; f[z_, u_] := Sum[Sum[a[n, k] u^k z^n/n!, {k, 0, Binomial[n, 2]}], {n, 1,
%t A336255    nn}]; sol = SolveAlways[ Series[0 == f[z, u] - z Exp[f[u z, u]] , {z, 0, nn}], {z, u}];Level[Table[Table[a[n, k], {k, 0, Binomial[n, 2]}], {n, 1, nn}] /.
%t A336255    sol, {2}] // Grid
%Y A336255 Row sums give A000169.
%Y A336255 Cf. A001864.
%K A336255 nonn,tabf
%O A336255 1,3
%A A336255 _Geoffrey Critzer_, Jul 14 2020