cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336260 a(0) = 1; a(n) = (n!)^4 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^4.

This page as a plain text file.
%I A336260 #12 Jan 04 2024 19:14:27
%S A336260 1,1,17,1474,404768,271581776,377987513392,974814164752800,
%T A336260 4289222350867156992,30232332223815625555968,
%U A336260 324796212685273837095714816,5108947647642107040382284423168,113818571142935411070742114448769024,3492592855002964381945529723625305210880
%N A336260 a(0) = 1; a(n) = (n!)^4 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^4.
%H A336260 Alois P. Heinz, <a href="/A336260/b336260.txt">Table of n, a(n) for n = 0..143</a>
%F A336260 a(n) = (n!)^4 * [x^n] 1 / (1 - polylog(4,x)).
%F A336260 a(n) ~ (n!)^4 / (polylog(3,r) * r^n), where r = 0.93073451517099234709643607941... is the root of the equation polylog(4,r) = 1. - _Vaclav Kotesovec_, Jul 15 2020
%p A336260 b:= proc(n) option remember; `if`(n=0, 1,
%p A336260       add(b(n-i)/i^4, i=1..n))
%p A336260     end:
%p A336260 a:= n-> n!^4*b(n):
%p A336260 seq(a(n), n=0..14);  # _Alois P. Heinz_, Jan 04 2024
%t A336260 a[0] = 1; a[n_] := a[n] = (n!)^4 Sum[a[k]/(k! (n - k))^4, {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]
%t A336260 nmax = 13; CoefficientList[Series[1/(1 - PolyLog[4, x]), {x, 0, nmax}], x] Range[0, nmax]!^4
%Y A336260 Cf. A007840, A217145, A336196, A336258, A336259, A336261.
%K A336260 nonn
%O A336260 0,3
%A A336260 _Ilya Gutkovskiy_, Jul 15 2020