This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336280 #11 Jul 25 2020 10:41:01 %S A336280 1,1,2,1,4,3,2,3,2,3,1,5,6,2,6,3,3,3,1,6,3,5,5,7,5,5,6,7,4,7,5,10,10, %T A336280 4,4,6,10,3,4,12,11,5,7,8,7,8,11,4,4,4,14,7,11,7,13,11,13,7,18,18,6,7, %U A336280 17,12,9,7,9,14,12,9,16,14,11,13,10 %N A336280 Number of consecutive primes of the form k*prime(n) + 1, starting with the least such prime A035095(n), that divides the Wendt determinant A048954(prime(n)). %C A336280 Michael B Rees has conjectured that: %C A336280 1. for every prime p, the Wendt determinant Wendt(p) has all its prime factors that are greater than p of the form k*p + 1. %C A336280 2. for every prime p = prime(n) and its corresponding Wendt determinant W(p) there exists a finite number of m consecutive primes (p_1,p_2,..,p_m) of the form k*p + 1 that will divide Wendt(p) where p_1 is always the least prime of the form k*p + 1. %C A336280 This sequence gives the value m for each p = prime(n). %H A336280 Gerard P. Michon, <a href="http://www.numericana.com/data/wendt.htm">Factorization of Wendt's Determinant</a> (table for n=1 to 114). %H A336280 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CirculantMatrix.html">Circulant matrix </a>. %H A336280 Wikipedia, <a href="https://en.wikipedia.org/wiki/Circulant_matrix">Circulant matrix </a>. %e A336280 a(6) = 3 gives p = prime(6) = 13 and W(13) = 3^6*53^2*79^2*131^2*521^2*8191. The sequence of primes of the form q = k*13 + 1, starting with the least such prime 53 that divide W(11) is (53, 79, 131). The sequence has 3 terms. %t A336280 w[n_] := Module[{x}, Resultant[x^n-1, (1+x)^n-1, x]]; k[n_, m_] := Module[{p=Prime@n, q=0, lst={}}, Do[q++; While[! PrimeQ[p*q+1], q++]; AppendTo[lst, q], {m}]; lst]; %t A336280 lst1 = {}; Do[lst=k[n, 50]*Prime[n]+1; m = 1; Do[If[IntegerQ[w[Prime[n]]/lst[[m]]]&&m<=Length@lst, m++, Break[]], {Length@lst}]; AppendTo[lst1, m-1], {n, 1, 75}]; lst1 %Y A336280 Cf. A035095, A048954. %K A336280 nonn %O A336280 1,3 %A A336280 _Frank M Jackson_ and Michael B Rees, Jul 15 2020