cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336310 Sum of path lengths over all labeled rooted unordered binary trees.

This page as a plain text file.
%I A336310 #14 Jul 18 2020 03:07:16
%S A336310 0,0,2,24,300,4260,69120,1271340,26233200,601246800,15171105600,
%T A336310 418203324000,12509695598400,403696590897600,13982667790291200,
%U A336310 517482647165484000,20381726051118432000,851302665544050720000,37587618060140244096000,1749369290830388555328000,85599487854917373617280000
%N A336310 Sum of path lengths over all labeled rooted unordered binary trees.
%F A336310 E.g.f.: ((1 -sqrt(1 -2*z -z^2))*(1 -z -sqrt(1 -2*z -z^2)))/(z*(1 -2*z -z^2)).
%F A336310 a(n) = Sum_{k} A336309(n,k)*k, for n>=1.
%F A336310 a(n) ~ n!/2 * (sqrt(2) + 1)^(n+1) * (1 - sqrt((10-sqrt(2))/(Pi*n))). - _Vaclav Kotesovec_, Jul 17 2020
%t A336310 nn = 20; Range[0, nn]! CoefficientList[ Series[-(((-1 + Sqrt[1 - 2 z - z^2]) (-1 + z + Sqrt[1 - 2 z - z^2]))/(z (-1 + 2 z + z^2))), {z, 0, nn}], z]
%o A336310 (PARI) my(z='z+O('z^25)); concat([0,0], Vec(serlaplace(((1 -sqrt(1 -2*z -z^2))*(1 -z -sqrt(1 -2*z -z^2)))/(z*(1 -2*z -z^2))))) \\ _Joerg Arndt_, Jul 18 2020
%Y A336310 Cf. A336309, A036774 (row sums).
%K A336310 nonn
%O A336310 0,3
%A A336310 _Geoffrey Critzer_, Jul 17 2020