A336327 Period of orbit of Post's tag system ({0,1},{(0,0),(1,01101)},3,100^n).
0, 4, 0, 4450, 0, 4450, 0, 0, 0, 4450, 0, 0, 6, 0, 0, 4450, 0, 0, 0, 0, 910, 4450, 0, 4450, 910, 4450, 0, 4450, 0, 4450, 910, 0, 0, 4450, 0, 4450, 910, 4, 0, 4, 0, 0, 910, 0, 6, 0, 910, 0, 0, 4450, 0, 4450, 910, 4450, 0, 292, 0, 4450, 0, 0, 910, 4450, 6, 4450
Offset: 1
Keywords
Links
- Emil L. Post, Formal reductions of the general combinatorial decision problem, American Journal of Mathematics, Vol. 65, No. 2 (Apr., 1943), pp. 197-215.
- Eric Weisstein's World of Mathematics, Tag System
Programs
-
Python
def step(w): i = 0 while w[0] != alfabet[i]: i = i+1 w = w+suffix[i] return w[n:len(w)] alfabet, suffix, n, ws, w0, m = "01", ["0", "01101"], 3, "100", "", 0 while m >= 0: w0, m = w0+ws, m+1 w, ww, i, a = w0, w0, 0, 0 while w != "" and a == 0: w, i = step(w), i+1 if i%100000 == 0: ww = w else: if w == ww or w == "": if w != "": a = i%100000 print(m, a)
Formula
Observed: if n is even then a(n) in {0, 4, 292, 4450}, if n is odd then a(n) in {0, 6, 910}.
Comments