A336330 Smallest side of primitive integer-sided triangles with A < B < C < 2*Pi/3 and such that FA + FB + FC is an integer where F is the Fermat point of the triangle.
57, 73, 43, 127, 97, 111, 49, 95, 296, 152, 323, 147, 285, 255, 247, 469, 403, 871, 561, 657, 559, 1083, 833, 1057, 485, 507, 1072, 760, 767, 379, 211, 195, 1208, 952, 1443, 1023, 1051, 889, 1240, 1209, 1249, 1423, 1005, 1679, 1568, 1843, 193, 485, 1512
Offset: 1
Keywords
Examples
a(1) = 57 because the first triple is (57, 65, 73) with corresponding d = FA + FB + FC = 264/7 + 195/7 + 325/7 = 112 and the symmetric relation satisfies: 3*(57^4 + 65^4 + 73^4 + 112^4) = (57^2 + 65^2 + 73^2 + 112^2)^2 = 642470409.
References
- Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.
Links
- Project Euler, Problem 143 - Investigating the Torricelli point of a triangle.
Crossrefs
Formula
a(n) = A336328(n, 1).
Comments