cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336335 a(n) is the index of the first occurrence of the Euclidean distance prime(n) from a point on a square spiral to its starting point at 1.

This page as a plain text file.
%I A336335 #14 Jul 25 2020 17:09:58
%S A336335 11,28,50,176,452,536,848,1388,2048,1682,3752,4784,6272,7268,8696,
%T A336335 7938,13748,14210,17756,19952,11888,24728,27308,25322,20456,38888,
%U A336335 42128,45476,32792,49826,64136,68252,43698,76868,77930,90752,69216,105788,111056,108354,127628
%N A336335 a(n) is the index of the first occurrence of the Euclidean distance prime(n) from a point on a square spiral to its starting point at 1.
%H A336335 Hugo Pfoertner, <a href="/A336335/b336335.txt">Table of n, a(n) for n = 1..1000</a>
%F A336335 a(n) = A054552(prime(n)) if prime(n) != 1 mod 4.
%e A336335   37--36--35--34--33--32--31
%e A336335    |                       |
%e A336335   38  17--16--15--14--13  30  ...
%e A336335    |   |               |   |   |
%e A336335   39  18   5---4---3  12  29  54
%e A336335    |   |   |       |   |   |   |
%e A336335   40  19   6   1---2 d=2 d=3  53
%e A336335    |   |   |           |   |   |
%e A336335   41  20   7---8---9--10  27  52
%e A336335    |   |                   |   |
%e A336335   42  21--22--23--24--25--26  51
%e A336335    |                           |
%e A336335   43--44--45--46--47--48--49-d=5
%e A336335 .
%e A336335 a(1) = 11 is the index of the first occurrence of distance d = 2 = prime(1) from the start of the spiral.
%e A336335 a(2) = 28 is the index of the first occurrence of distance d = 3 = prime(2) from the start of the spiral.
%e A336335 Distances of the form 4*k+1 corresponding to Pythagorean primes A002144 occur earlier than on the East spoke of the square spiral, dependent on the decomposition of p^2 into two squares. prime(3)^2 = 4^2 + 3^2 leads to index a(3) = 50 in the spiral.
%Y A336335 Cf. A002144, A002145, A054552, A174344, A268038, A274923, A336336.
%K A336335 nonn
%O A336335 1,1
%A A336335 _Hugo Pfoertner_, Jul 24 2020