A336364 Rectangular array by antidiagonals: row n shows the positive integers whose distance to the nearest prime is n.
2, 3, 1, 5, 4, 9, 7, 6, 15, 26, 11, 8, 21, 34, 93, 13, 10, 25, 50, 117, 118, 17, 12, 27, 56, 123, 122, 119, 19, 14, 33, 64, 143, 144, 121, 120, 23, 16, 35, 76, 145, 186, 205, 300, 531, 29, 18, 39, 86, 185, 204, 217, 324, 533, 532, 31, 20, 45, 92, 187, 206
Offset: 1
Examples
Corner: 2 3 5 7 11 13 17 19 23 29 31 37 1 4 6 8 10 12 14 16 18 20 22 24 9 15 21 25 27 33 35 39 45 49 51 55 26 34 50 56 64 76 86 92 94 116 124 134 93 117 123 143 145 185 187 203 207 215 219 245
Links
- Sean A. Irvine, Java program (github).
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Mathematica
a[?PrimeQ] = 0; a[n] := Min[NextPrime[n] - n, n - NextPrime[n, -1]]; t = Table[a[n], {n, 1, 2000}]; (* A051699 *) r[n_] := Flatten[Position[t, n]]; u[n_, k_] := r[n][[k]]; TableForm[Table[u[n, k], {n, 0, 15}, {k, 1, Length[r[n]]}]] (* A337364, array *) Table[u[n - k, k], {n, 0, 15}, {k, n, 1, -1}] // Flatten (* A337364, sequence *)
Comments