This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336366 #18 Apr 21 2021 03:49:30 %S A336366 1,5,7,9,11,13,17,19,21,23,25,29,31,37,39,41,43,47,49,51,53,59,61,67, %T A336366 71,73,77,79,83,85,89,91,95,97,99,101,103,107,109,111,113,115,119,121, %U A336366 123,125,127,129,131,133,137,139,145,149,151,155,157,161,163 %N A336366 Numbers k such that gcd(k, prime(k) + prime(k+1)) = 1. %C A336366 This sequence and A336367 partition the positive integers. %e A336366 In the following table, p(k) = A000040(k) = prime(k). %e A336366 k p(k) p(k)+p(k+1) gcd %e A336366 1 2 5 1 %e A336366 2 3 8 4 %e A336366 3 5 12 3 %e A336366 4 7 18 2 %e A336366 5 11 24 1 %e A336366 6 13 30 6 %e A336366 Thus 1 and 5 are in this sequence; 2 and 3 are in A336367; 2 and 11 are in A336368; 3 and 5 are in A336369. %t A336366 p[n_] := Prime[n]; %t A336366 u = Select[Range[200], GCD[#, p[#] + p[# + 1]] == 1 &] (* A336366 *) %t A336366 v = Select[Range[200], GCD[#, p[#] + p[# + 1]] > 1 &] (* A336367 *) %t A336366 Prime[u] (* A336368 *) %t A336366 Prime[v] (* A336369 *) %o A336366 (PARI) isok(m) = gcd(m, prime(m)+prime(m+1)) == 1; \\ _Michel Marcus_, Jul 20 2020 %Y A336366 Cf. A000040, A336367, A336368, A336369. %K A336366 nonn %O A336366 1,2 %A A336366 _Clark Kimberling_, Jul 19 2020