cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336373 Primes prime(k) such that gcd(k, prime(k)+prime(k-1)) > 1.

This page as a plain text file.
%I A336373 #10 Jul 16 2023 10:36:33
%S A336373 7,13,19,23,29,37,41,43,47,53,61,71,73,79,89,101,103,107,113,131,139,
%T A336373 151,163,167,173,181,193,197,199,223,229,233,239,251,263,269,271,281,
%U A336373 293,307,311,313,317,337,347,349,359,373,383,397,409,419,421,433,443
%N A336373 Primes prime(k) such that gcd(k, prime(k)+prime(k-1)) > 1.
%C A336373 This sequence and A336372 partition the set of odd primes.
%e A336373 In the following table, p(n) = A000040(n) = prime(n).
%e A336373   n    p(n)   p(n)+p(n-1)   gcd
%e A336373   2     3         5          1
%e A336373   3     5         8          1
%e A336373   4     7        12          4
%e A336373   5    11        18          1
%e A336373   6    13        24          6
%e A336373 2 and 3 are in A336370; 4 and 6 are in A336371; 3 and 5 are in A336372; 7 and 13 are in this sequence.
%t A336373 p[n_] := Prime[n];
%t A336373 u = Select[Range[2, 200], GCD[#, p[#] + p[# - 1]] == 1 &]  (* A336370 *)
%t A336373 v = Select[Range[2, 200], GCD[#, p[#] + p[# - 1]] > 1 &]   (* A336371 *)
%t A336373 Prime[u]  (* A336372 *)
%t A336373 Prime[v]  (* A336373 *)
%Y A336373 Cf. A000040, A336366, A336370, A336371, A336372.
%K A336373 nonn
%O A336373 1,1
%A A336373 _Clark Kimberling_, Oct 05 2020
%E A336373 Offset corrected by _Mohammed Yaseen_, Jul 16 2023