This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336374 #8 Apr 21 2021 03:47:30 %S A336374 1,3,5,7,11,13,15,17,19,23,27,29,31,35,37,39,41,43,47,49,53,55,59,61, %T A336374 63,65,67,69,71,73,77,79,81,83,85,87,89,91,93,95,97,99,101,103,107, %U A336374 109,113,115,119,121,127,129,131,135,137,139,141,143,147,149,151 %N A336374 Numbers k such that gcd(k, prime(k) + prime(k+2)) = 1. %C A336374 This sequence and A336374 partition the positive integers. %e A336374 In the following table, p(k) = A000040(k) = prime(k). %e A336374 k p(k) p(k)+p(k+2) gcd %e A336374 1 2 7 1 %e A336374 2 3 10 2 %e A336374 3 5 16 1 %e A336374 4 7 20 4 %e A336374 5 11 28 1 %e A336374 6 13 32 2 %e A336374 1 and 3 are in this sequence; 2 and 4 are in A336375; 2 and 5 are in A336376; 3 and 7 are in A336377. %t A336374 p[n_] := Prime[n]; %t A336374 u = Select[Range[200], GCD[#, p[#] + p[# + 2]] == 1 &] (* A336374 *) %t A336374 v = Select[Range[200], GCD[#, p[#] + p[# + 2]] > 1 &] (* A336375 *) %t A336374 Prime[u] (* A336376 *) %t A336374 Prime[v] (* A336377 *) %Y A336374 Cf. A000040, A336366, A336375, A336376, A336377. %K A336374 nonn %O A336374 1,2 %A A336374 _Clark Kimberling_, Oct 06 2020